Modification of Pt-Porous Composite Material (Pt-PCM) and Its Application for Electroanalysis of Uric Acid and Electrosynthesis of Acetic Acid from Ethanol

Riyanto, Nurhasanah, Mohamed Rozali Othman

Abstract

Research on the synthesis of Pt-Porous Composite Material (Pt-PCM) has been done. This material is used for the electrochemical activity of uric acid and electrochemical synthesis of acetic acid from ethanol. Pt-PCM is made by mixing 99.995% platinum powder and PVC or Poly (vinyl chloride) homogeneously with a homogenizer for 3.0 h, plus tetrahydrofuran solvent, and pressed with a strength of 10 tons/cm2. The material produced was analysis using Scanning Electron Microscopy (SEM), voltammetry potential V and Tafel plot. The material is used as an electrode for the determination of uric acid and the synthesis of acetic acid from ethanol. The results showed that Pt-PCM has evenly distributed pores and has a perfect Tafel slope compared to metal platinum or solid platinum. Pt-PCM also has the excellent ability as a working electrode for the analysis of uric acid in human urine and electro synthetic acetic acid from alcohol. In conclusion, Pt-Porous Composite Material (Pt-PCM) is a porous material, so it is excellent as a candidate for electrodes.

References

Arias, J., E. Morallon, and J. Vazquez (2004). Electrooxidation of Methanol on Electrodes Modified by Platinum Micro Particles on Aniline Derivatives Polymers. Spain: Departamento de Quimica Fisica, Universidad de Alicante, 3(4); 55–60

Boretius, T., T. Jurzinsky, C. Koehler, S. Kerzenmacher, H. Hillebrecht, and T. Stieglitz (2011). High-porous Platinum Electrodes for Functional Electrical Stimulation. IEEE Engineering in Medicine and Biology Society, 5(6); 5404–5407

Chen, J. C., H. H. Chung, C. T. Hsu, D. M. Tsai, A. Kumar, and J. M. Zen (2005). A Disposable Single use Electrochemical Sensor for The Detection of Uric Acid in Human Whole Blood. Sensors and Actuators B: Chemical, 110(2); 364–369

Chen, S. and M. Schell (2000). Excitability and Multistability in the Electrochemical Oxidation Of Primary Alcohols. Electrochimica Acta, 45(19); 3069–3080

Childers, C. L., H. Huang, and C. Korzeniewski (1999). Formaldehyde Yields from Methanol Electrochemical Oxidation on Carbon-supported Platinum Catalysts. Langmuir, 15(3); 786–789

Christensen, P., S. Jones, and A. Hamnett (2013). An in Situ FTIR Spectroscopic Study of the Electrochemical Oxidation of Ethanol at a Pb-modified Polycrystalline Pt Electrode Immersed in Aqueous KOH. Physical Chemistry Chemical Physics, 15(40); 17268–17276

Iwasita, I. (2002). The Electrocatalysis of Ethanol Oxidation. Proceedings of the 3rd LAMNET Workshop; 76

Khan, M. M. I., A. M. J. Haque, and K. Kim (2013). Electrochemical Determination of Uric Acid in the Presence of Ascorbic Acid on Electrochemically Reduced Graphene Oxide Modified Electrode. Journal of Electroanalytical Chemistry, 700; 54–59

Lin, X. and Y. Li (2006). Monolayer Covalent Modification of 5-hydroxytryptophan on Glassy Carbon Electrodes for Simultaneous Determination of Uric Acid and Ascorbic Acid. Electrochimica Acta, 51(26); 5794–5801

Lin, X. Q. and G. P. Jin (2005). Monolayer Modification of Glassy Carbon Electrode by Using Propionylcholine for Selective Detection of Uric Acid. Electrochimica Acta, 50(16-17); 3210–3216

Luo, J. W., M. Zhang, and D. W. Pang (2005). Selective and Sensitive Determination of Uric Acid at DNA Modified Graphite Powder Microelectrodes. Sensors and Actuators B: Chemical, 106(1); 358–362

Matos, R. C., M. A. Augelli, C. L. Lago, and L. Angnes (2000). Flow Injection Analysis-amperometric Determination of Ascorbic and Uric Acids in Urine Using Arrays of Gold Microelectrodes Modified by Electrodeposition of Palladium. Analytica Chimica Acta, 404(1); 151–157

Meier, M. A. and U. S. Schubert (2003). Terpyridine-modified Poly (vinyl Chloride): Possibilities for Supramolecular Grafting and Crosslinking. Journal of Polymer Science Part A: Polymer Chemistry, 41(19); 2964–2973

Pereira, M. G., M. D. Jiménez, M. Elizalde, A. Manzo-Robledo, and N. Alonso-Vante (2004). Study of the Electrooxidation of Ethanol on Hydrophobic Electrodes by DEMS And HPLC. Electrochimica Acta, 49(22-23); 3917–3925

Reanpang, P., J. Upan, and J. Jakmunee (2021). A Novel Flow Injection Amperometric Sensor Based on Carbon Black and Graphene Oxide Modified Screen-printed Carbon Electrode for Highly Sensitive Determination of Uric Acid. Talanta, 232; 122493

Sadikoglu, M., G. Saglikoglu, S. Yagmur, E. Orta, and S. Yilmaz (2011). Voltammetric Determination of Acyclovir in Human Urine Using Ultra Trace Graphite and Glassy Carbon Electrodes. Current Analytical Chemistry, 7(2); 130–135

Shahrokhian, S. and M. Ghalkhani (2006). Simultaneous Voltammetric Detection of Ascorbic Acid and Uric Acid at A Carbon-paste Modified Electrode Incorporating Thionine–nafion Ion-pair as an Electron Mediator. Electrochimica Acta, 51(13); 2599–2606

Shen, P. K. and C. Xu (2006). Alcohol Oxidation on Nanocrystalline Oxide Pd/c Promoted Electrocatalysts. Electrochemistry Communications, 8(1); 184–188

Tarasevich, M., Z. Karichev, V. Bogdanovskaya, E. Lubnin, and A. Kapustin (2005). Kinetics of Ethanol Electrooxidation at RuNi Catalysts. Electrochemistry Communications, 7(2); 141–146

Tripković, A., K. D. Popović, and J. Lović (2001). The Influence of the Oxygen-containing Species on the Electrooxidation of the C1–C4 Alcohols at Some Platinum Single Crystal Surfaces in Alkaline Solution. Electrochimica Acta, 46(20-21); 3163–3173

Wang, Y. (2011). The Electrochemistry of Uric Acid at a Gold Electrode Modified With L-Cysteine, and its Application to Sensing Uric Urine. Microchimica Acta, 172; 419–424

Wei, Y., M. Li, S. Jiao, Q. Huang, G. Wang, and B. Fang (2006). Fabrication of CeO2 Nanoparticles Modified Glassy Carbon Electrode and its Application for Electrochemical Determination of UA and AA Simultaneously. Electrochimica Acta, 52(3); 766–772

Xu, C., P. K. Shen, X. Ji, R. Zeng, and Y. Liu (2005). Enhanced Activity for Ethanol Electrooxidation On PT–MGO/C Catalysts. Electrochemistry Communications, 7(12); 1305–1308

Xu, Y., T. Page, L. Shamona, S. Noding, H. Modrow, J. Hormes, N. Satyanayarana, and B. Rambabu (2004). A Study of Electrochemical and Structural Properties of Carbon Supported Electrodes, New Catalysts and Ion Conducting Membranes. Intersociety Energy Conversion Engineering Conference; 1254–1259

Zare, H., F. Memarzadeh, M. M. Ardakani, M. Namazian, and S. Golabi (2005). Norepinephrine-modified Glassy Carbon Electrode for the Simultaneous Determination of Ascorbic Acid and Uric Acid. Electrochimica Acta, 50(16-17); 3495–3502

Authors

Riyanto
006120101@uii.ac.id (Primary Contact)
Nurhasanah
Mohamed Rozali Othman
Riyanto, Nurhasanah, & Othman, M. R. . (2023). Modification of Pt-Porous Composite Material (Pt-PCM) and Its Application for Electroanalysis of Uric Acid and Electrosynthesis of Acetic Acid from Ethanol. Science and Technology Indonesia, 8(4), 554–559. https://doi.org/10.26554/sti.2023.8.4.554-559

Article Details