Preparation of PAN/PVDF Nanofiber Mats Loaded with Coconut Shell Activated Carbon and Silicon dioxide for Lithium-Ion Battery Anodes

Muhammad Rama Almafie, Rahma Dani, Riyanto, Leni Marlina, Jaidan Jauhari, Ida Sriyanti

Abstract

Utilizing carbon materials derived from natural biomass holds significant promise for battery applications, owing to their low cost, abundant availability, and environmentally sustainable characteristics. However, graphite anode materials do not meet the demands of efficient batteries. Coconut shell waste has the potential to be used as activated carbon in energy storage anodes. By adding silicon dioxide (SiO2) to maintain structural stability and electrochemical reaction kinetics, the advantages of CCS can be maximized. Polyacrylonitrile/polyvinylidene fluoride (PAN/PVDF) composite polymer was used as a matrix to embed CCS/SiO2 and synthesize nanofibers via electrospinning. The resulting nanofibers had diameters ranging from to 575–707 nm, with cross-linked, porous, and beadless characteristics. Mechanical properties were measured by single-fiber micro tensile tests. The young modulus, tensile strength, and toughness of each nanofiber were successfully maintained at 13.7 ± 0.4 MPa, 34.4 ± 0.1 MPa, and 982 ± 10 kJ/m3, respectively, because of the presence of a β-crystal growth layer that facilitated efficient stress transmission. The reduction-oxidation process response had a potential difference of less than 1.286 V in the first cycle, whereas for the third and fifth cycles, it was maintained below 3.416 V. The lithium-ion diffusion coefficient was below 4.73×1013 cm2/s. Using the anode directly, as in lithium-ion batteries, provided a high capacity of 382 mAh/g after 200 cycles. Good cycle stability, with over 98% retention of the initial capacitance after 200 charge/discharge cycles, underscores its potential for application in lithium-ion batteries.

References

Adams, R. A., A. Varma, and V. G. Pol (2019). Carbon Anodes for Nonaqueous Alkali Metal-Ion Batteries and Their Thermal Safety Aspects. Advanced Energy Materials, 9(35); 1900550

Aghayari, S. (2022). PVDF Composite Nanofibers Applications. Heliyon, 8(11); e11260

Al Ja’farawy, M. S., D. N. Hikmah, U. Riyadi, A. Purwanto, and H. Widiyandari (2021). A Review: The Development of SiO2/C Anode Materials for Lithium-Ion Batteries. Journal of Electronic Materials, 50(12); 1–21

Almafie, M. R., L. Marlina, R. Riyanto, J. Jauhari, Z. Nawawi, and I. Sriyanti (2022). Dielectric Properties and Flexibility of Polyacrylonitrile/Graphene Oxide Composite Nanofibers. ACS omega, 7(37); 33087–33096

Anuchi, S. O., K. L. S. Campbell, and J. P. Hallett (2022). Effective Pretreatment of Lignin-Rich Coconut Wastes Using a Low-Cost Ionic Liquid. Scientific Reports, 12(1); 6108

Awadh, S. M. and Z. M. Yaseen (2019). Investigation of Silica Polymorphs Stratified in Siliceous Geode Using FTIR and XRD Methods. Materials Chemistry and Physics, 228; 45–50

Bag, O., K. Tekin, and S. Karagoz (2020). Microporous Activated Carbons from Lignocellulosic Biomass by KOH Activation. Fullerenes, Nanotubes and Carbon Nanostructures, 28(12); 1030-1037

Belgibayeva, A. and I. Taniguchi (2019). Synthesis and Characterization of SiO2/C Composite Nanofibers As Free-Standing Anode Materials for Li-Ion Batteries. Electrochimica Acta, 328; 135101

Belgibayeva, A. and I. Taniguchi (2021). Insights into the Improved Electrochemical Performance of Lithium-Sulfur Battery with Free-Standing SiO2/C Composite Nanofiber Mat Interlayer. Journal of Power Sources, 484; 229308

Cao, X., C. Ma, L. Luo, L. Chen, H. Cheng, R. S. Orenstein, and X. Zhang (2023). Nanofiber Materials for Lithium-Ion Batteries. Advanced Fiber Materials, 5(4); 1141–1197

Cao, Z., M. Sang, S. Chen, J. Jia, M. Yang, H. Zhang, X. Li, and S. Yang (2020). In situ Constructed (010)-Oriented LifePO4 Nanocrystals/Carbon Nanofiber Hybrid Network: Facile Synthesis of Free Standing Cathodes for Lithium-Ion Batteries. Electrochimica Acta, 333; 135538

Chang, H., H. Deng, Y. Wang, S. Wang, L. Cao, Z. Dong, and T. Tan (2022). Synthesis of Large Mesoporous Carbon from Cotton Stalk for Use As an Anode for Lithium-Ion Batteries. Biomass and Bioenergy, 167; 106641

Chen, Q., L. Tan, S. Wang, B. Liu, Q. Peng, H. Luo, P. Jiang, H. Tang, and R. Sun (2021). A Facile Synthesis of Phosphorus Doped Si/SiO2/C with High Coulombic Efficiency and Good Stability As an Anode Material for Lithium Ion Batteries. Electrochimica Acta, 385; 138385

Cheng, W. h., L. Wang, Q. b. Zhang, Z. j. Wang, J. b. Xu, W. Ren, L. Bian, and A. m. Chang (2017). Preparation and Characterization of Nanoscale LifePO4 Cathode Materials by a Two-Step Solid State Reaction Method. Journal of Materials Science, 52; 2366–2372

Cui, M., L. Wang, X. Guo, E. Wang, Y. Yang, T. Wu, D. He, S. Liu, and H. Yu (2019). Designing of Hierarchical Mesoporous/macroporous Silicon-Based Composite Anode Material for Low-Cost High-Performance Lithium-Ion Batteries. Journal of Materials Chemistry A, 7(8); 3874–3881

Da Róz, A., F. Leite, L. Pereiro, P. Nascente, V. Zucolotto, O. Oliveira Jr, and A. Carvalho (2010). Adsorption of Chitosan on Spin-Coated Cellulose Films. Carbohydrate Polymers, 80(1); 65–70

Darmawan, S., L. Efiyanti, N. Saputra, H. Wibisono, G. Pari, D. Hendra, J. Adam, and Mufti (2022). Quality of Microporous Activated Charcoal from Coconut Shell Waste in Industrial Scale. Asian Journal of Chemistry, 34; 543–549

Descals, A., S. Wich, E. Meijaard, D. L. Gaveau, S. Peedell, and Z. Szantoi (2020). High-Resolution Global Map of Smallholder and Industrial Closed-Canopy Oil Palm Plantations. Earth System Science Data Discussions, 2020(3); 1–22

Duan, D., D. Chen, L. Huang, Y. Zhang, Y. Zhang, Q. Wang, G. Xiao, W. Zhang, H. Lei, and R. Ruan (2021). Activated Carbon from Lignocellulosic Biomass As Catalyst: A Review of the Applications in Fast Pyrolysis Process. Journal of Analytical and Applied Pyrolysis, 158; 105246

El Sakhawy, M., S. Kamel, A. Salama, and H. A. S. Tohamy (2018). Preparation and Infrared Study of Cellulose Based Amphiphilic Materials. Cellulose Chemistry and Technology, 52(3-4); 193–200

Elele, E., Y. Shen, J. Tang, Q. Lei, B. Khusid, G. Tkacik, and C. Carbrello (2019). Mechanical Properties of Polymeric Microfiltration Membranes. Journal of Membrane Science, 591; 117351

Elgrishi, N., K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey (2018). A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 95(2); 197–206

Ellerbrock, R., M. Stein, and J. Schaller (2022). Comparing Amorphous Silica, Short-Range-Ordered Silicates and Silicic Acid Species by FTIR. Scientific Reports, 12(1); 11708

Fatmawati, A., T. Nurtono, and A. Widjaja (2023). Thermogravimetric Kinetic-Based Computation of Raw and Pretreated Coconut Husk Powder Lignocellulosic Composition. Bioresource Technology Reports, 22; 101500

Feng, X. Y., X. Li, M. Tang, A. Gan, and Y. Y. Hu (2017). Enhanced Rate Performance of Li4Ti5O12 Anodes with Bridged Grain Boundaries. Journal of Power Sources, 354; 172–178

Figueroa Campos, G. A., J. P. H. Perez, I. Block, S. T. Sagu, P. Saravia Celis, A. Taubert, and H. M. Rawel (2021). Preparation of Activated Carbons from Spent Coffee Grounds and Coffee Parchment and Assessment of Their Adsorbent Efficiency. Processes, 9(8); 1396

Gao, X., L. Sheng, L. Yang, X. Xie, D. Li, Y. Gong, M. Cao, Y. Bai, H. Dong, and G. Liu (2023). High Stability Core-Shell Structured PAN/PVDF Nanofiber Separator with Excellent Lithium-Ion Transport Property for Lithium-Based Battery. Journal of Colloid and Interface Science, 636; 317-327

Gao, Y., Z. Pan, J. Sun, Z. Liu, and J. Wang (2022). High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Letters, 14(1); 94

Gao, Y., L. Yin, S. J. Kim, H. Yang, I. Jeon, J. P. Kim, S. Y. Jeong, H. W. Lee, and C. R. Cho (2019). Enhanced Lithium Storage by ZnFe2O4 Nanofibers As Anode Materials for Lithium-Ion Battery. Electrochimica Acta, 296; 565–574

Gong, W., J. Gu, S. Ruan, and C. Shen (2019). Preparation of High-Strength Polyvinylidene Fluoride Lithium-Ion Battery Separator by Electrospinning. Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 35(3); 148–155

Gonzalez, I. Z., H. C. Chiu, R. Gauvin, G. P. Demopoulos, and Y. Verde Gomez (2022). Silicon Doped Carbon Nanotubes As High Energy Anode for Lithium-Ion Batteries. Materials Today Communications, 30; 103158

Han, X., Q. Meng, X. Wan, B. Sun, Y. Zhang, B. Shen, J. Gao, Y. Ma, P. Zuo, and S. Lou (2021). Intercalation Pseudocapacitive Electrochemistry of Nb-Based Oxides for Fast Charging of Lithium-Ion Batteries. Nano Energy, 81; 105635

He, J., J. Meng, and Y. Huang (2023). Challenges and Recent Progress in Fast-Charging Lithium Ion Battery Materials. Journal of Power Sources, 570; 232965

Hu, D., L. Chen, J. Tian, Y. Su, N. Li, G. Chen, Y. Hu, Y. Dou, S. Chen, and F. Wu (2021). Research Progress of Lithium Plating on Graphite Anode in Lithium-Ion Batteries. Chinese Journal of Chemistry, 39(1); 165–173

Hu, X. and Z. Lin (2021). Transforming Waste Polypropylene Face Masks into S-Doped Porous Carbon As the Cathode Electrode for Supercapacitors. Ionics, 27(5); 2169–2179

Jauhari, J., M. R. Almafie, L. Marlina, Z. Nawawi, and I. Sriyanti (2021). Physicochemical Properties and Performance of Graphene Oxide/Polyacrylonitrile Composite Fibers As Supercapacitor Electrode Materials. RSC advances, 11(19); 11233–11243

Kalu Uka, G. M., S. Kumar, A. C. Kalu Uka, S. Vikram, G. O. Ihekweme, N. Ranjan, E. N. Anosike Francis, G. Prajapati, A. Nduba, and A. P. Onwualu (2022). Production of Activated Carbon Electrode for Energy Storage Application in Supercapacitors Via KOH Activation of Waste Termite Biomass. Waste and Biomass Valorization, 13(5); 1–16

Kanjana, K., P. Harding, T. Kwamman, W. Kingkam, and T. Chutimasakul (2021). Biomass-Derived Activated Carbons with Extremely Narrow Pore Size Distribution Via Eco-Friendly Synthesis for Supercapacitor Application. Biomass and Bioenergy, 153; 106206

Keppeler, M. and M. Srinivasan (2017). Interfacial Phenomena/Capacities Beyond Conversion Reaction Occurring in Nano-sized Transition-Metal-Oxide-Based Negative Electrodes in Lithium Ion Batteries: A Review. ChemElectroChem, 4(11); 2727–2754

Keppetipola, N. M., M. Dissanayake, P. Dissanayake, B. Karunarathne, M. A. Dourges, D. Talaga, L. Servant, C. Olivier, T. Toupance, and S. Uchida (2021). Graphite-Type Activated Carbon from Coconut Shell: A Natural Source for Eco-Friendly Non-Volatile Storage Devices. RSC Advances, 11(5); 2854–2865

Khan, A., A. M. Asiri, M. Jawaid, and N. Saba (2020). Effect of Cellulose Nano Fibers and Nano Clays on the Mechanical, Morphological, Thermal and Dynamic Mechanical Performance of Kenaf/Epoxy Composites. Carbohydrate Polymers, 239; 116248

Khoshnood Motlagh, E., N. Asasian Kolur, and S. Sharifian (2022). A Comparative Study on Rice Husk and Rice Straw As Bioresources for Production of Carbonaceous Adsorbent and Silica. Biomass Conversion and Biorefinery, 12(12); 5729–5738

Lee, J. H., M. G. T. Nathan, H. W. Kim, S. M. Lee, H. I. Kim, J. H. Kim, I. Seo, and J. K. Kim (2022). A High-Stable Polyacrylonitrile/Ceramic Composite Membranes for High-Voltage Lithium-Ion Batteries. Materials Chemistry and Physics, 291; 126516

Li, S., K. Wang, G. Zhang, S. Li, Y. Xu, X. Zhang, X. Zhang, S. Zheng, X. Sun, and Y. Ma (2022). Fast Charging Anode Materials for Lithium-Ion Batteries: Current Status and Perspectives. Advanced Functional Materials, 32(23); 2200796

Li, Y., C. Li, H. Qi, K. Yu, and C. Liang (2018). Mesoporous Activated Carbon from Corn Stalk Core for Lithium Ion Batteries. Chemical Physics, 506; 10–16

Liu, J., F. Song, Q. Li, J. Li, Z. Hong, C. Wang, M. Liu, L. Bai, and F. Zeng (2021a). Preparation and Performance of Porous Polyethersulfone (PES)/Al2O3 Separator for HighPerformance Lithium Oxygen Battery. Ionics, 27(12); 1–10

Liu, T., Y. Qu, J. Liu, L. Zhang, B. Cheng, and J. Yu (2021b). Core-Shell Structured C@SiO2 Hollow Spheres Decorated with Nickel Nanoparticles As Anode Materials for Lithium-Ion Batteries. Small, 17(49); 2103673

Liu, X., J. Zhao, J. Wang, Z. Le, P. Nie, H. Wang, T. Xu, G. Xu, L. Chang, and M. Zhu (2022). Papers Electrolyte-Philic and Thermal-Resistant Polyimide Separator Enhances the Performance of Flexible Silicon/carbon Nanofibers for Lithium-Ion Batteries. Journal of Energy Storage, 54; 10532

Liu, Z., G. Li, Q. Qin, L. Mi, G. Li, G. Zheng, C. Liu, Q. Li, and X. Liu (2021c). Electrospun PVDF/PANN Membrane for Pressure Sensor and Sodium-Ion Battery Separator. Advanced Composites and Hybrid Materials, 4(4); 1215–1225

Loghavi, M. M., S. Bahadorikhalili, N. Lari, M. H. Moghim, M. Babaiee, and R. Eqra (2020). The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode. Zeitschrift für Physikalische Chemie, 234(3); 381-397

Marques, A., H. Nijveen, C. Somi, W. Ligterink, and H. Hilhorst (2019). Induction of Desiccation Tolerance in Desiccation Sensitive Citrus Limon Seeds. Journal of Integrative Plant Biology, 61(5); 624–638

Martín Yerga, D., D. C. Milan, X. Xu, J. Fernández Vidal, L. Whalley, A. J. Cowan, L. J. Hardwick, and P. R. Unwin (2022). Dynamics of Solid-Electrolyte Interphase Formation on Silicon Electrodes Revealed by Combinatorial Electrochemical Screening. Angewandte Chemie International Edition, 61(34); e202207184

Medhat, A., H. H. El Maghrabi, A. Abdelghany, N. M. A. Menem, P. Raynaud, Y. M. Moustafa, M. A. Elsayed, and A. A. Nada (2021). Efficiently Activated Carbons from Corn Cob for Methylene Blue Adsorption. Applied Surface Science Advances, 3; 100037

Megahed, M., D. Tobbala, and M. A. El baky (2021). The Effect of Incorporation of Hybrid Silica and Cobalt Ferrite Nanofillers on the Mechanical Characteristics of Glass Fiber-Reinforced Polymeric Composites. Polymer Composites, 42(1); 271–284

Méndez, A., M. Álvarez, J. Fidalgo, C. Di Stasi, J. Manyà, and G. Gascó (2022). Biomass-Derived Activated Carbon As Catalyst in the Leaching of Metals from a Copper Sulfide Concentrate. Minerals Engineering, 183; 107594

Moghim, M. H., A. Nahvibayani, and R. Eqra (2022). Mechanical Properties of Heat-Treated Polypropylene Separators for Lithium-Ion Batteries. Polymer Engineering & Science, 62(9); 3049–3058

Mohammed, Y. A., F. Ma, L. Liu, C. Zhang, H. Dong, Q. Wang, X. Xu, and A. A. Al Wahbi (2021). Preparation of Electrospun Polyvinylidene Fluoride/Amidoximized Polyacrylonitrile Nanofibers for Trace Metal Ions Removal from Contaminated Water. Journal of Porous Materials, 28; 383–392

Nasser, J., L. Zhang, J. Lin, and H. Sodano (2020). Aramid Nanofiber Reinforced Polymer Nanocomposites Via Amide-Amide Hydrogen Bonding. ACS Applied Polymer Materials, 2(7); 2934–2945

Nizam, N. U. M., M. M. Hanafiah, E. Mahmoudi, A. A. Halim, and A. W. Mohammad (2021). The Removal of Anionic and Cationic Dyes from an Aqueous Solution Using Biomass-Based Activated Carbon. Scientific Reports, 11(1); 1–17

Nzereogu, P., A. Omah, F. Ezema, E. Iwuoha, and A. Nwanya (2022). Anode Materials for Lithium Ion Batteries: A Review. Applied Surface Science Advances, 9; 100233

Qiu, H., L. Zhao, M. Asif, X. Huang, T. Tang, W. Li, T. Zhang, T. Shen, and Y. Hou (2020). SnO2 Nanoparticles Anchored on Carbon Foam As a Freestanding Anode for High Performance Potassium-Ion Batteries. Energy & Environmental Science, 13(2); 571–578

Rahman, M. M., S. Mateti, Q. Cai, I. Sultana, Y. Fan, X. Wang, C. Hou, and Y. Chen (2019). High Temperature and High Rate Lithium-Ion Batteries with Boron Nitride Nanotubes Coated Polypropylene Separators. Energy Storage Materials, 19; 352–359

Rashid, T. U., R. E. Gorga, and W. E. Krause (2021). Mechanical Properties of Electrospun Fibers A Critical Review. Advanced Engineering Materials, 23(9); 2100153

Renman, V., M. V. Blanco, A. N. Norberg, F. Vullum Bruer, and A. M. Svensson (2021). Electrochemical Activation of a Diatom-Derived SiO2/C Composite Anode and Its Implementation in a Lithium Ion Battery. Solid State Ionics, 371; 115766

Rethinam, P. and V. Krishnakumar (2022). Global Scenario of Coconut and Coconut Water. In Coconut Water: A Promising Natural Health Drink-Distribution, Processing and Nutritional Benefits. Springer, pages 17–35

Rey, I., C. Vallejo, G. Santiago, M. Iturrondobeitia, and E. Lizundia (2021). Environmental Impacts of Graphite Recycling from Spent Lithium-Ion Batteries Based on Life Cycle Assessment. ACS Sustainable Chemistry & Engineering, 9(43); 14488–14501

Rodrigues, D. L. C., F. M. Machado, A. G. Osório, C. F. de Azevedo, E. C. Lima, R. S. da Silva, D. R. Lima, and F. M. Gonçalves (2020). Adsorption of Amoxicillin onto High Surface Area–Activated Carbons Based on Olive Biomass: Kinetic and Equilibrium Studies. Environmental Science and Pollution Research, 27(33); 41394–41404

Samal, R., S. Radhakrishnan, and C. S. Rout (2022). Advanced Analytical Techniques for Characterization of 2D Materials. AIP Publishing LLC

Sankar, S., S. Saravanan, A. T. A. Ahmed, A. I. Inamdar, H. Im, S. Lee, and D. Y. Kim (2019). Spherical ActivatedCarbon Nanoparticles Derived from Biomass Green Tea Wastes for Anode Material of Lithium-Ion Battery. Materials Letters, 240; 189–192

Schlumberger, C. and M. Thommes (2021). Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry—A Tutorial Review. Advanced Materials Interfaces, 8(4); 2002181

Shafizadeh, A., H. Rastegari, H. Shahbeik, H. Mobli, J. Pan, W. Peng, G. Li, M. Tabatabaei, and M. Aghbashlo (2023). A Critical Review of the Use of Nanomaterials in the Biomass Pyrolysis Process. Journal of Cleaner Production, 400; 136705

Si, L., K. Yan, C. Li, Y. Huang, X. Pang, X. Yang, D. Sui, Y. Zhang, J. Wang, and C. C. Xu (2022). Binder-Free SiO2 Nanotubes/Carbon Nanofibers Mat As Superior Anode for Lithium-Ion Batteries. Electrochimica Acta, 404; 139747

Sirisangsawang, R. and N. Phetyim (2023). Optimization of Tannin Extraction from Coconut Coir through Response Surface Methodology. Heliyon, 9(2); e13377

Sriyanti, I., M. R. Almafie, R. Dani, M. K. N. Ap Idjan, R. U. Partan, M. R. Sanjaya, and J. Jauhari (2023). The Influence of Electrospinning Process Parameters of Polyvinylidene Fluoride and Polyacrylonitrile (PVDF/PAN) Nanofiber Composites. Jurnal Penelitian Pendidikan IPA, 9(9); 7159-7169

Sriyanti, I., L. Marlina, A. Fudholi, S. Marsela, and J. Jauhari (2021). Physicochemical Properties and In vitro Evaluation Studies of Polyvinylpyrrolidone/cellulose Acetate Composite Nanofibres Loaded with Chromolaena Odorata (L) King Extract. Journal of Materials Research and Technology, 12; 333–342

Su, Y. P., L. N. Sim, X. Li, H. G. Coster, and T. H. Chong (2021). Anti-Fouling Piezoelectric PVDF Membrane: Effect of Morphology on Dielectric and Piezoelectric Properties. Journal of Membrane Science, 620; 118818

Sui, D., M. Yao, L. Si, K. Yan, J. Shi, J. Wang, C. C. Xu, and Y. Zhang (2023). Biomass-Derived Carbon Coated SiO2 Nanotubes As Superior Anode for Lithium-Ion Batteries. Carbon, 205; 510–518

Suryani, S., S. Sariani, F. Earnestly, M. Marganof, R. Rahmawati, S. Sevindrajuta, T. M. I. Mahlia, and A. Fudholi (2020). A Comparative Study of Virgin Coconut Oil, Coconut Oil and Palm Oil in Terms of Their Active Ingredients. Processes, 8(4); 402

Triwibowo, J., S. Priyono, I. Purawiardi, T. Lestariningsih, and C. R. Ratri (2016). Study on Electrochemical Performance of Carbon-Coated LifePO4 As Cathode Material for Lithium Ion Batteries. In AIP Conference Proceedings, volume 1755. AIP Publishing, page 150009

Venugopal, N. (2021). Silicon/Spent Coffee Waste-Derived Carbon Composite As an Efficient Anode for Li-Ion Batteries. International Journal of Electrochemical Science, 16(8); 210836

Wang, H., Y. Fu, R. Liu, J. Xiong, and N. Li (2022a). Waterproof, Breathable and Infrared-Invisible Polyurethane/silica Nanofiber Membranes for Wearable Textiles. Dalton Transactions, 51(36); 13949–13956

Wang, J., C. Li, S. M. Nyambura, J. Xu, H. Li, C. Geng, X. Li, X. Feng, and X. Zhu (2022b). Co-Pyrolysis of Food Waste with Coconut Fiber: Thermogravimetric Analyzes and Hydrogen Yield Optimization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(4); 10230–10247

Wang, P., J. Bai, K. Li, H. Ma, W. Li, X. Zhu, Y. Sun, and B. Zhao (2021). NiCo2N Hollow Sphere with Interconnected Nanosheets Shell: A Potential Anode Material for High Performance Lithium-Ion Batteries. Chemical Engineering Journal, 425; 130607

Wang, P., D. Yan, C. Wang, H. Ding, H. Dong, J. Wang, S. Wu, X. Cui, C. Li, and D. Zhao (2022c). Study of the Formation and Evolution of Solid Electrolyte Interface Via In-situ Electrochemical Impedance Spectroscopy. Applied Surface Science, 596; 153572

Wang, X., H. Cheng, G. Ye, J. Fan, F. Yao, Y. Wang, Y. Jiao, W. Zhu, H. Huang, and D. Ye (2022d). Key Factors and Primary Modification Methods of Activated Carbon and Their Application in Adsorption of Carbon-Based Gases: A Review. Chemosphere, 287; 131995

Wu, H., J. Zhu, L. Liu, K. Cao, D. Yang, C. Gong, H. Lei, H. Hang, W. Yao, and J. Xu (2021). Intercalation and delamination of Ti2SnC with high lithium ion storage capacity. Nanoscale, 13(15); 7355–7361

Xia, A., C. Zhao, W. Yu, Y. Han, J. Yi, and G. Tan (2020). Mo-Doped δ-MnO2 Anode Material Synthesis and Electrochemical Performance for Lithium-Ion Batteries . Journal of Applied Electrochemistry, 50(7); 733–744

Xiang, Z., Y. Chen, J. Li, X. Xia, Y. He, and H. Liu (2017). Submicro-Sized Porous SiO2 /C and SiO2/C/Graphene Spheres for Lithium Ion Batteries. Journal of Solid State Electrochemistry, 21(8); 2425–2432

Xu, X., D. Martín Yerga, N. E. Grant, G. West, S. L. Pain, M. Kang, M. Walker, J. D. Murphy, and P. R. Unwin (2023). Interfacial Chemistry Effects in the Electrochemical Performance of Silicon Electrodes under Lithium-Ion Battery Conditions. Small, 19(40); 2303442

Yasmeen, S., M. K. Kabiraz, B. Saha, M. Qadir, M. Gafur, and S. Masum (2016). Chromium (VI) Ions Removal from Tannery Effluent Using Chitosan-Microcrystalline Cellulose Composite As Adsorbent. International Research Journal of Pure and Applied Chemistry, 10(4); 1–14

Zelenka, T., T. Horikawa, and D. Do (2023). Artifacts and Misinterpretations in Gas Physisorption Measurements and Characterization of Porous Solids. Advances in Colloid and Interface Science, 311; 102831

Zhang, T., H. Wei, J. Gao, S. Chen, Y. Jin, C. Deng, S. Wu, H. Xiao, and W. Li (2022a). Synthesis of Sulfonated Hierarchical Carbons and Theirs Application on the Production of Furfural from Wheat Straw. Molecular Catalysis, 517; 112034

Zhang, Y., J. Li, H. Li, H. Shi, Z. Gong, T. Lu, and L. Pan (2022b). Facile Self-Assembly of Carbon-Free Vanadium Sulfide Nanosheet for Stable and High-Rate Lithium-Ion Storage. Journal of Colloid and Interface Science, 607; 145–1

Authors

Muhammad Rama Almafie
Rahma Dani
Riyanto
Leni Marlina
Jaidan Jauhari
Ida Sriyanti
ida_sriyanti@unsri.ac.id (Primary Contact)
Almafie, M. R. ., Dani, R., Riyanto, Marlina, L., Jauhari, J., & Sriyanti, I. (2024). Preparation of PAN/PVDF Nanofiber Mats Loaded with Coconut Shell Activated Carbon and Silicon dioxide for Lithium-Ion Battery Anodes. Science and Technology Indonesia, 9(2), 427–447. https://doi.org/10.26554/sti.2024.9.2.427-447

Article Details