Review of The Effectiveness of Plant Media Extracts in Barium Hexaferrite Magnets (BaFe12O19)

Jaya Edianta, Nanang Fauzi, Marzuki Naibaho, Fitri Suryani Arsyad, Idha Royani

Abstract

Betel leaf is a typical Indonesian herbal plant that propagates on other tree trunks. So far, betel leaf has only been used in biomedicine and traditional medicine, whereas the chemical compounds of betel leaf can be used to absorb electromagnetic waves. In this mini-review, we review several research results to discuss the potential effectiveness of betel leaf in barium hexaferrite as an absorber of electromagnetic radiation. We compiled this mini-review based on the literature review method that is discussed extensively and in-depth regarding the chemical composition of betel leaf, modification of the development of barium hexaferrite material with betel leaf media extract, characteristics of BaFe12O19 as absorption of electromagnetic waves, and the effectiveness of media extracts in BaFe12O19 as absorption of electromagnetic waves. Based on the results of the literature review, the modification of BaFe12O19 material synthesis can include microemulsion, solid-state, coprecipitation, sol-gel, and hydrothermal synthesis. So far, hydrothermal synthesis is a synthesis method of mixing betel leaf extract media and ferrite-based magnets that have been studied before. Betel leaf in ferrite-based magnetic materials has been studied not to damage the surface morphology and characteristics of the magnetic material. The results of the assessment also show the effectiveness of adding other elements or compounds such as Ni, Al2O3, and composites in ferrite-based magnetic materials that can absorb more than 90% of electromagnetic waves in the frequency range 2-18 GHz.

References

Adhityaxena, A. T., Megantika, A., Arbianti1, R., Utami1, T. S., & Hermansyah, H. (2020). Extraction of flavonoid from mother-in-law’s tongue leaves (Sansevieria trifasciata) by ultrasound assisted enzymatic extraction and its inhibition test. The 4th International Tropical Renewable Energy Conference (i-TREC 2019) AIP Conf. Proc, 1–8. Depok: AIP Conference Proceedings. https://doi.org/10.1063/5.0014728

Ahmadian-Fard-Fini, S., Ghanbari, D., & Salavati-Niasari, M. (2019). Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: Hydrothermal synthesis of magnetic hollow NiFe2O4 -carbon dots nanocomposite material. Composites Part B: Engineering, 161, 564–577. https://doi.org/10.1016/j.compositesb.2018.12.131

Ahmadian-Fard-Fini, S., Salavati-Niasari, M., & Ghanbari, D. (2018). Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 203(2017), 481–493. https://doi.org/10.1016/j.saa.2018.06.021

Ahmadian-Fard-Fini, S., Salavati-Niasari, M., & Safardoust-Hojaghan, H. (2017). Hydrothermal green synthesis and photocatalytic activity of magnetic CoFe2O4–carbon quantum dots nanocomposite by turmeric precursor. Journal of Materials Science: Materials in Electronics, 28(21), 1–10. https://doi.org/10.1007/s10854-017-7522-1
Alonso-Rodrígueza, D. W., Ruiz-Lunab, H., Alfaro-Cruzc, M. ., Bañuelos-Friasa, A., Alvarado-Pereaa, L., & Valero-Lunaa, C. (2020). Synthesis and characterization of BaFe12O19-WC catalysts prepared by mechanical milling. Fuel, 280, 1–6. https://doi.org/10.1016/j.fuel.2020.118608
Amiri, M., Pardakhti, A., Ahmadi-Zeidabadi, M., Akbari, A., & Salavati-Niasari, M. (2018). Magnetic nickel ferrite nanoparticles: Green synthesis by Urtica and therapeutic effect of frequency magnetic field on creating cytotoxic response in neural cell lines. Colloids and Surfaces B: Biointerfaces, 172, 244–253. https://doi.org/10.1016/j.colsurfb.2018.08.049
Atiya, A. (2017). A Novel Resorcinol Derivative from the Leaves of Piper betle. Chemistry of Natural Compounds, 53(4), 611–613. https://doi.org/10.1007/s10600-017-2070-8
Bahadur, A., Saeed, A., Iqbal, S., Shoaib, M., Ahmad, I., Rahman, M. S. ur, … Hussain, W. (2017). Morphological and magnetic properties of BaFe12O19 nanoferrite: A promising microwave absorbing material. Ceramics International, 2–13. https://doi.org/10.1016/j.ceramint.2017.03.039
Carol, T. T. ., Mohammed, J., Basandrai, D., Godara, S. K., Bhadu, G. R., Mishra, S., … Srivastava, A. K. (2020). X-band shielding of electromagnetic interference (EMI) by Co2Y barium hexaferrite, bismuth copper titanate (BCTO), and polyaniline (PANI) composite. Journal of Magnetism and Magnetic Materials, 501(166433), 1–12. https://doi.org/10.1016/j.jmmm.2020.166433
Dairy, A. R. Al, Al-Hmoud, L. A., & Khatatbeh, H. A. (2019). Magnetic and structural properties of Barium Hexaferrite nanoparticles doped with Titanium. Symmetry, 11(6), 1–12. https://doi.org/10.3390/sym11060732
Dineshkumar, R., & Devikala, S. (2020). Facile synthesis of fluorescent carbon quantum dots from Betel leafs (Piper betle) for Fe3+ sensing. Materials Today: Proceedings, 3–7. https://doi.org/10.1016/j.matpr.2020.03.096
Elfrida, Junaida, E., Ariska, R. N., & Jayanthi, S. (2020). Effect of Piper Betle Linn Extract on the Growth of Staphylococcus Aureus Atcc 25923. Budapest International Research and Critics Institute-Journal (BIRCI-Journal), 3(4), 3028–3034. https://doi.org/10.33258/birci.v3i4.1325 3028
Fan, L., Zheng, H., Zhou, X., Zhang, H., Wu, Q., Zheng, P., … Zhang, Y. (2020). A comparative study of microstructure, magnetic, and electromagnetic properties of Zn2W hexaferrite prepared by sol–gel and solid-state reaction methods. Journal of Sol-Gel Science and Technology. https://doi.org/10.1007/s10971-020-05364-2
Feng, G., Zhou, W., Deng, H., Yang, M., Qing, Y., Luo, F., … Wang, C. (2019). Magnetic and microwave absorption properties in 2.6–18 GHz of A-site or B-site substituted BaFe12O19 ceramics. Journal of Materials Science: Materials in Electronics, 30(13), 12382–12388. https://doi.org/10.1007/s10854-019-01596-3
Foroughi, F., Hassanzadeh-Tabrizi, S. A., Amighian, J., & Saffar-Teluri, A. (2015). A designed magnetic CoFe2O4-hydroxyapatite core-shell nanocomposite for Zn(II) removal with high efficiency. Ceramics International, 41(5), 6844–6850. https://doi.org/10.1016/j.ceramint.2015.01.133
Fu, C., & Ravindra, N. M. (2012). Magnetic iron oxide nanoparticles: Synthesis and applications. Bioinspired, Biomimetic and Nanobiomaterials, 1(4), 229–244. https://doi.org/10.1680/bbn.12.00014
Gu, H., Zhang, H., Ma, C., Sun, H., Liu, C., Dai, K., … Guo, Z. (2019). Smart strain sensing organic–inorganic hybrid hydrogels with nano barium ferrite as the cross-linker. Journal of Materials Chemistry C, (8), 1–24. https://doi.org/10.1039/C8TC05448G
Guo, L., An, Q.-D., Xiao, Z.-Y., Zhai, S.-R., Cuia, L., & Li, Z.-C. (2019). Performance enhanced electromagnetic wave absorber from controllable modification of natural plant fiber. Royal Society of Chemistry, 9, 16690–16700. https://doi.org/10.1039/c9ra02764e
Handoko, E., Budi, S., Sugihartono, I., Marpaung, M. A., Jalil, Z., Taufiq, A., & Alaydrus, and M. (2020). Microwave absorption performance of barium hexaferrite multi-nanolayers. Materials Express, 10(8), 1328–1336. https://doi.org/https://doi.org/10.1166/mex.2020.1811
Hasany, S., Abdurahman, N., Sunarti, A., & Jose, R. (2013). Magnetic Iron Oxide Nanoparticles: Chemical Synthesis and Applications Review. Current Nanoscience, 9(3), 561–575. https://doi.org/10.2174/15734137113099990085
Hebbalalu, D., Lalley, J., Nadagouda, M. N., & Varma, R. S. (2013). Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustainable Chemistry and Engineering, 1(7), 703–712. https://doi.org/10.1021/sc4000362
Kaur, G., Kaur, H., Kumar, S., Verma, V., Jhinjer, H. S., Singh, J., … Al-Rashed, S. (2020). blooming approach: one-pot biogenic synthesis of TiO2 nanoparticles using piper betle for the degradation of industrial reactive yellow 86 dye. Journal of Inorganic and Organometallic Polymers and Materials, 1–9. https://doi.org/10.1007/s10904-020-01797-y
Kefeni, K. K., Msagati, T. A. ., & Mamba, B. B. (2017). Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device. Materials Science and Engineering B, 215, 37–55. https://doi.org/10.1016/j.mseb.2016.11.002
Koutzarova, T., Kolev, S., Ghelev, C., Nedkov, I., Vertruen, B., Cloots, R., … Zaleski, A. (2013). Differences in the structural and magnetic properties of nanosized barium hexaferrite powders prepared by single and double microemulsion techniques. Journal of Alloys and Compounds, 579, 174–180. https://doi.org/10.1016/j.jallcom.2013.06.049
Kumar, Santosh, Wani, M. Y., & Koh, J. (2018). Synthesis of nanomaterials involving microemulsion and miceller medium. Nanotechnology in the Life Science, 273–290. https://doi.org/10.1007/978-3-319-99570-0_12
Kumar, Sunil, Supria, S., Pradhan, L. K., Phandey, R., & Kar, M. (2020). Grain size effect on magnetic and dielectric properties of barium hexaferrite (BHF). Phyica B: Condensed Matter, 579(411908), 1–6. https://doi.org/10.1016/j.physb.2019.411908
Li, H., Qin, L., Feng, Y., Hu, L., & Zhou, C. (2015). Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate. Journal of Magnetism and Magnetic Materials, 384, 231–238. https://doi.org/10.1016/j.jmmm.2015.01.065
Li, Y., Xia, A., & Jin, C. (2016). Synthesis, structure and magnetic properties of hexagonal BaFe12O19 ferrite obtained via a hydrothermal method. Journal of Materials Science: Materials in Electronics, 27(10), 10864–10868. https://doi.org/10.1007/s10854-016-5195-9
Liu, Y., Lin, Y., & Yang, H. (2019). Facile fabrication for core-shell BaFe12O19@C composites with excellent microwave absorption properties. Journal of Alloys and Compounds, 805, 130–137. https://doi.org/10.1016/j.jallcom.2019.07.006
Liu, Z., Pan, Y., Li, X., Jie, J., & Zeng, M. (2017). Chemical composition, antimicrobial and anti-quorum sensing activities of pummelo peel flavonoid extract. Industrial Crops & Products, 109, 663–869. https://doi.org/10.1016/j.indcrop.2017.09.054
López-Téllez, G., Balderas-Hernández, P., Barrera-Díaz, C. E., Vilchis-Nestor, A. R., Roa-Morales, G., & Bilyeu, B. (2013). Green method to form iron oxide nanorods in orange peels for chromium(VI) reduction. Journal of Nanoscience and Nanotechnology, 13(3), 2354–2361. https://doi.org/10.1166/jnn.2013.7093
Luthfianti, H. R., Widanarto, W., Ghoshal, S. K., Effendi, M., & Cahyanto, W. T. (2020). Magnetic and microwave absorption properties of Mn4+ doped barium-natural ferrites prepared by the modified solid-state reaction method. Journal of Physics: Conference Series, 1494(012043), 1–6. https://doi.org/10.1088/1742-6596/1494/1/012043
Madhubala, V., & Kalaivani, T. (2018). Phyto and hydrothermal synthesis of Fe3O4 @ZnO core-shell nanoparticles using Azadirachta indica and its cytotoxicity studies. Applied Surface Science, 449, 584–590. https://doi.org/10.1016/j.apsusc.2017.12.105
Madhumita, M., Guha, P., & Nag, A. (2020). Bio-actives of betel leaf (Piper betle L.): A comprehensive review on extraction, isolation, characterization, and biological activity. phytotheraphy Research, 34(10), 1–19. https://doi.org/doi.org/10.1002/ptr.6715
Madhumitaa, M., Guhaa, P., & Nag, A. (2019). Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: Process optimization, GC-MS analysis and anti-microbial activity. Industrial Crops & Products, 138, 1–12. https://doi.org/10.1016/j.indcrop.2019.111578
Mallikarju, K., Dillip, G. R., Narasimha, G., Sushma, N. J., & Prasad Raj, B. D. (2012). Phytofabrication and Characterization of Silver Nanoparticles from Piper betle Broth. Research Journal of Nanoscience and Nanotechnology, 1(2), 17–23. https://doi.org/10.3923/rjnn.2012.17.23
Manikandan, A., Durka, M., & Antony, S. A. (2015). Hibiscus rosa-sinensis leaf extracted green methods, magneto-optical and catalytic properties of spinel CuFe2O4 nano- and microstructures. Journal of Inorganic and Organometallic Polymers and Materials, 25(5), 1019–1031. https://doi.org/10.1007/s10904-015-0203-8
Meng, X., Han, Q., Sun, Y., & Liu, Y. (2019). Synthesis and microwave absorption properties of Ni0.5Zn0.5Fe2O4/BaFe12O19@polyaniline composite. Ceramics International, 45(2), 2504–2508. https://doi.org/10.1016/j.ceramint.2018.10.179
Misra, T., Mitra, S., & Sen, S. (2018). Adsorption studies of carbamazepine by green-synthesized magnetic nanosorbents. Nanotechnology for Environmental Engineering, 3(11), 1–12. https://doi.org/10.1007/s41204-018-0040-4
Mosleh, Z., Kameli, P., Poorbaferani, A., Ranjbar, M., & Salamati, H. (2016). Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. Journal of Magnetism and Magnetic Materials, 397, 101–107. https://doi.org/10.1016/j.jmmm.2015.08.078
Nikmanesh, H., Hoghoghifard, S., & Sichani, H. B. (2019). Study of the structural, magnetic, and microwave absorption properties of the simultaneous substitution of several cations in the barium hexaferrite structure. Journal of Alloys and Compounds, 775, 1101–1108. https://doi.org/10.1016/j.jallcom.2018.10.051
Ovalioglu, H., Sozeri, H., Kabaer, M., & Kucuk, I. (2010). Magnetic properties of nano-crystalline barium ferrite synthesized by different synthesis route. Acta Physica Polonica A, 118(5), 1020–1021. https://doi.org/10.12693/APhysPolA.118.1020
Pan, Z., Wang, Y., Huang, H., Ling, Z., Dai, Y., & Ke, S. (2015). Recent development on preparation of ceramic inks in ink-jet printing. Ceramics International, 41(10), 12515–12528. https://doi.org/10.1016/j.ceramint.2015.06.124
Peymanfar, R., Ahmadi, A., & Zakerin, E. S. (2020). The microwave absorbing, magnetic, electromagnetic shielding, and optical properties using CuCo2S4 nanoparticles. Journal of Alloys and Compounds, 848, 1–33. https://doi.org/10.1016/j.jallcom.2020.156453
Prasad, C., Sreenivasulu, K., Gangadhara, S., & Venkateswarlu, P. (2017). Bio inspired green synthesis of Ni/Fe3O4 magnetic nanoparticles using Moringa oleifera leaves extract: A magnetically recoverable catalyst for organic dye degradation in aqueous solution. Journal of Alloys and Compounds, 700(2017), 252–258. https://doi.org/10.1016/j.jallcom.2016.12.363
Punuri, J. B., Sharma, P., Sibyala, S., Tamuli, R., & Bora, U. (2012). Piper betle-mediated green synthesis of biocompatible gold nanoparticles. International Nano Letters, 1(2), 1–9. https://doi.org/10.1186/2228-5326-2-18
Purba, R. A. P., & Paengkoum, P. (2019). Bioanalytical HPLC method of Piper betle L. for quantifying phenolic compound, water-soluble vitamin, and essential oil in five different solvent extracts. Journal of Applied Pharmaceutical Science, 9(05), 34–39. https://doi.org/10.7324/JAPS.2019.90504
Rafiq, M. A., Waqar, M., Mirza, T. A., Farooq, A., & Zulfiqar, A. (2017). Effect of Ni2+ substitution on the structural, magnetic, and dielectric properties of barium hexagonal ferrites (BaFe12O19). Journal of Electronic Materials, 46(1), 241–246. https://doi.org/10.1007/s11664-016-4872-z
Rahmayeni, R., Oktavia, Y., Stiadi, Y., Arief, S., & Zulhadjri, Z. (2020). Spinel ferrite of MnFe2O4 synthesized in Piper betle Linn extract media and its application as photocatalysts and antibacterial. Journal of Dispersion Science and Technology, 0(0), 1–10. https://doi.org/10.1080/01932691.2020.1721011
Ramasahayam, S. K., Gunawan, G., Finlay, C., & Viswanathan, T. (2012). Renewable resource-based magnetic nanocomposites for removal and recovery of phosphorous from contaminated waters. Water, Air, and Soil Pollution, 223(8), 4853–4863. https://doi.org/10.1007/s11270-012-1241-2
Rusianto, T., Wildan, M. W., Abraha, K., & Kusmono. (2015). Characterizations of Ceramic Magnets from Iron Sand. International Journal of Technology (IJTech), 6(6), 1017–1024. https://doi.org/10.14716/ijtech.v6i6.1572
Sadishkumar, V., & Jeevaratnam, K. (2016). In vitro probiotic evaluation of potential antioxidant lactic acid bacteria isolated from idli batter fermented with Piper betle leaves. International Journal of Food Science and Technology, 5(2), 1–12. https://doi.org/https://doi.org/10.1111/ijfs.13284
Sarma, C., Rasane, P., Kaur, S., Singh, J., Singh, J., Gat, Y., … Dhawan, K. (2018). Antioxidant and antimicrobial potential of selected varieties of piper betle L. (Betel leaf). Anais da Academia Brasileira de Ciencias, 90(4), 3871–3878. https://doi.org/10.1590/0001-3765201820180285
Saryanti, D., Nugraheni, D., & Astuti, N. S. (2020). Preparation and Characterization of Betel Leaves (Piper betle Linn) Extract Nanoparticle with Ionic Gelation Method. Journal of Tropical Pharmacy and Chemistry, 5(1), 15–21. https://doi.org/10.25026/jtpc.v5i1.224
Setiamukti, D., Khusnani, A., & Toifur, M. (2020). The effect of electrolyte concentration on the sensitivity of low-temperature sensor performance of Cu/Ni film. Science and Technology Indonesia, 5(2), 28. https://doi.org/10.26554/sti.2020.5.2.28-33
Sharifi, I., Shokrollahi, H., & Amiri, S. (2012). Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of Magnetism and Magnetic Materials, 324(6), 903–915. https://doi.org/10.1016/j.jmmm.2011.10.017
Shejawal, K. P., Randive, D. S., Bhinge, S. D., Bhutkar, M. A., Wadkar, G. H., & Jadhav, N. R. (2020). Green synthesis of silver and iron nanoparticles of isolated proanthocyanidin: its characterization, antioxidant, antimicrobial, and cytotoxic activities against COLO320DM and HT29. Journal of Genetic Engineering and Biotechnology, 18(1). https://doi.org/10.1186/s43141-020-00058-2
Singh, J., Kaur, N., Kaur, P., Kaur, S., Kaur, J., Kukkar, P., … Rawat, M. (2018). Piper betle leaves mediated synthesis of biogenic SnO2 nanoparticles for photocatalytic degradation of reactive yellow 186 dye under direct sunlight. Environmental Nanotechnology, Monitoring and Management, 10, 331–338. https://doi.org/10.1016/j.enmm.2018.07.001
Sözeri, H., Mehmedi, Z., Kavas, H., & Baykal, A. (2015). Magnetic and microwave properties of BaFe12O19 substituted with magnetic, non-magnetic and dielectric ions. Ceramics International, 41(8), 9602–9609. https://doi.org/10.1016/j.ceramint.2015.04.022
Susilawati, Doyan, A., & Khalilurrahman. (2017). Synthesis and characterization of barium hexaferrite with manganese (Mn) doping material as anti-radar. AIP Conference Proceedings, 1801(040007), 1–8. https://doi.org/10.1063/1.4973096
Tagrida, M., & Benjakul, S. (2020). Ethanolic extract of Betel (Piper betle L.) and Chaphlu (Piper sarmentosum Roxb.) dechlorophyllized using sedimentation process: Production, characteristics, and antioxidant activities. Journal of Food Biochemistry, 1–14. https://doi.org/https://doi.org/10.1111/jfbc.13508
Thakur, A., Sharma, N., Bhatti, M., Sharma, M., Trukhanov, A. V., Trukhanov, S. V., … Thakur, P. (2020). Synthesis of barium ferrite nanoparticles using rhizome extract of Acorus Calamus: Characterization and its efficacy against different plant phytopathogenic fungi. Nano-Structures and Nano-Objects, 24, 100599. https://doi.org/10.1016/j.nanoso.2020.100599
Tyagi, S., Pandey, V. S., Goel, S., & Garg, A. (2018). Synthesis and characterization of RADAR absorbing BaFe12O19/NiFe2O4 magnetic nanocomposite. Integrated Ferroelectrics, 186(1), 25–31. https://doi.org/10.1080/10584587.2017.1369319
Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., … Jaremko, M. (2020). Important Flavonoids and Their Role as a Therapeutic Agent. molecules, 25(22), 1–39. https://doi.org/10.3390/molecules25225243
Vinnik, D. A., Klygach, D. S., Zhivulin, V. E., Malkin, A. I., Vakhitov, M. G., Gudkova, S. A., … Trukhanov, A. V. (2018). Electromagnetic properties of BaFe12O19:Tiat centimeter wavelengths. Journal of Alloys and Compounds, 1–17. https://doi.org/https://doi.org/10.1016/j.jallcom.2018.04.315
Vinnik, D. A., Trukhanov, A. V., Podgornov, F. V., Trofimov, E. A., Zhivulin, V. E., Starikov, A. Y., … Baykal, A. (2020). Correlation between entropy state, crystal structure, magnetic and electrical properties in M-type Ba-hexaferrites. Journal of the European Ceramic Society, 40(12), 4022–4028. https://doi.org/10.1016/j.jeurceramsoc.2020.04.036
Xu, Y., Ge, F., Xie, M., Huang, S., Qian, J., Wang, H., … Li, H. (2019). Fabrication of magnetic BaFe12O19/Ag3PO4 composites with an in situ photo-Fenton-like reaction for enhancing reactive oxygen species under visible light irradiation. Catalysis Science & Technology, (10), 2563–2570. https://doi.org/10.1039/C8CY02449A
Yang, X., Ge, M., Zhang, J., Jia, B., & Bu, F. (2020). Fabrication of Al2O3@BaFe12O19 core-shell powder by a modified heterogeneous precipitation method. Ceramics International, 45(3), 1–18. https://doi.org/https://doi.org/10.1016/j.ceramint.2018.10.234
Zhao, L., Lv, X., Wei, Y., Ma, C., & Zhao, L. (2013). Hydrothermal synthesis of pure BaFe12O19 hexaferrite nanoplatelets under high alkaline system. Journal of Magnetism and Magnetic Materials, 332, 44–47. https://doi.org/10.1016/j.jmmm.2012.11.056

Authors

Jaya Edianta
Nanang Fauzi
Marzuki Naibaho
Fitri Suryani Arsyad
fitri_suryani@unsri.ac.id (Primary Contact)
Idha Royani
Edianta, J., Fauzi, N., Naibaho, M., Arsyad, F. S., & Royani, I. (2021). Review of The Effectiveness of Plant Media Extracts in Barium Hexaferrite Magnets (BaFe12O19). Science and Technology Indonesia, 6(2), 39–52. https://doi.org/10.26554/sti.2021.6.2.39-52

Article Details