Synthesis, Characterization of Chitosan-ZnO/CuO Nanoparticles Film, and its Effect as an Antibacterial Agent of Escherichia coli

Ahmad Fatoni, Agnes Rendowati, Lasmaryna Sirumapea, Lidya Miranti, Siti Masitoh, Nurlisa Hidayati


The film of chitosan- ZnO/CuO nanoparticles was synthesized. This study were the synthesis and characterization of the chitosan-ZnO/CuO nanoparticles film and its effect as an antibacterial of Escherichia coli. The ZnO, CuO, and ZnO/CuO were biosynthesized by biological method and for the synthesis of the chitosan-ZnO/CuO nanoparticles film, the casting method was adopted. The product was analyzed by FTIR spectroscopy, X-ray diffraction (XRD), and Scanning Electron Microscope (SEM), respectively. The product of chitosan-ZnO/CuO nanoparticles film as paper disk and agar disk diffusion method was selected to study an antibacterial agent of this product. The Zn-O or Cu-O group was observed at a peak between 468-675 cm−1 for ZnO and 503 and 619 cm−1 for CuO nanoparticles, respectively. ZnO, CuO, and ZnO/CuO nanoparticles are in the crystalline form and it has a crystallite size of 13.21, 13.21, and 11.49 nm respectively. After interacting with chitosan, the metal nanoparticles such as ZnO, CuO, and ZnO/CuO nanoparticles can change the crystalline form of chitosan to be amorphous form. The addition of ZnO, CuO, and ZnO/CuO nanoparticles in the chitosan will change the surface morphology of chitosan. Chitosan-ZnO/CuO nanoparticles film can inhibit the growth of Escherichia coli bacteria.


Adeyemi, J. O., D. C. Onwudiwe, and A. O. Oyedeji (2022). Biogenic Synthesis of CuO, ZnO, and CuO–ZnO Nanoparticles Using Leaf Extracts of Dovyalis caffra and their Biological Properties. Molecules, 27(10); 3206

Al-Dahash, G., W. Mubder Khilkala, and S. N. Abd Alwahid (2018). Preparation and Characterization of ZnO Nanoparticles by Laser Ablation in NaOH Aqueous Solution. Iranian Journal of Chemistry and Chemical Engineering, 37(1); 11–16

Aljuhani, A., S. M. Riyadh, and K. D. Khalil (2021). Chitosan/CuO Nanocomposite Films Mediated Regioselective Synthesis of 1, 3, 4-trisubstituted Pyrazoles under Microwave Irradiation. Journal of Saudi Chemical Society, 25(8); 101276

Altikatoglu, M., A. Attar, F. Erci, C. M. Cristache, I. Isildak, et al. (2017). Green Synthesis of Copper Oxide Nanoparticles Using Ocimum basilicum Extract and their Antibacterial Activity. Fresenius Environmental Bulletin, 25(12); 7832–7837

Alzahrani, E. (2018). Chitosan Membrane Embedded with ZnO/CuO Nanocomposites for the Photodegradation of Fast Green Dye under Artificial and Solar Irradiation. Analytical Chemistry Insights, 13; 1177390118763361

Asamoah, R., A. Yaya, B. Mensah, P. Nbalayim, V. Apalangya, Y. Bensah, L. Damoah, B. Agyei Tuffour, D. Dodoo-Arhin, and E. Annan (2020). Synthesis and Characterization of Zinc and Copper Oxide Nanoparticles and their Antibacteria Activity. Results in Materials, 7; 100099

Balouiri, M., M. Sadiki, and S. K. Ibnsouda (2016). Methods for in Vitro Evaluating Antimicrobial Activity: A Review. Journal of Pharmaceutical Analysis, 6(2); 71–79

Berra, D., S. Laouini, B. Benhaoua, M. Ouahrani, D. Berrani, and A. Rahal (2018). Green Synthesis of Copper Oxide Nanoparticles by Pheonix dactylifera L Leaves Extract. Digest Journal of Nanomaterials and Biostructures, 13(4); 1231–1238

Bhavyasree, P. and T. Xavier (2020). Green Synthesis of Copper Oxide/Carbon Nanocomposites Using the Leaf Extract of Adhatoda vasica Nees, their Characterization and Antimicrobial Activity. Heliyon, 6(2); e03323

Bloch, K., K. Pardesi, C. Satriano, and S. Ghosh (2021). Bacteriogenic Platinum Nanoparticles for Application in Nanomedicine. Frontiers in Chemistry, 9; 624344

Cao, Y., H. A. Dhahad, M. El-Shorbagy, H. Q. Alijani, M. Zakeri, A. Heydari, E. Bahonar, M. Slouf, M. Khatami, M. Naderifar, et al. (2021). Green Synthesis of Bimetallic ZnO–CuO Nanoparticles and their Cytotoxicity Properties. Scientific Reports, 11(1); 23479

Chinnathambi, A. and T. A. Alahmadi (2021). Zinc Nanoparticles Green-synthesized by Alhagi maurorum Leaf Aqueous Extract: Chemical Characterization and Cytotoxicity, Antioxidant, and Anti-osteosarcoma Effects. Arabian Journal of Chemistry, 14(4); 103083

Dananjaya, S., R. S. Kumar, M. Yang, C. Nikapitiya, J. Lee, and M. De Zoysa (2018). Synthesis, Characterization of ZnO-chitosan Nanocomposites and Evaluation of its Antifungal Activity Against Pathogenic Candida albicans. International Journal of Biological Macromolecules, 108; 1281–1288

Das, S. and V. C. Srivastava (2017). Synthesis and Characterization of ZnO/CuO Nanocomposite by Electrochemical Method. Materials Science in Semiconductor Processing, 57; 173–177

Dobrucka, R. and J. Długaszewska (2016). Biosynthesis and Antibacterial Activity of ZnO Nanoparticles Using Trifolium pratense Flower Extract. Saudi Journal of Biological Sciences, 23(4); 517–523

Dobrucka, R., M. Kaczmarek, M. Łagiedo, A. Kielan, and J. Dlugaszewska (2019). Evaluation of Biologically Synthesized Au-CuO and CuO-ZnO Nanoparticles Against Glioma Cells and Microorganisms. Saudi Pharmaceutical Journal, 27(3); 373–383

El Fawal, G., H. Hong, X. Song, J. Wu, M. Sun, C. He, X. Mo, Y. Jiang, and H. Wang (2020). Fabrication of Antimicrobial Films Based on Hydroxyethylcellulose and ZnO for Food Packaging Application. Food Packaging and Shelf Life, 23; 100462

Estevam, L. d. S., H. S. Debone, C. M. P. Yoshida, and C. Da Silva (2012). Adsorption of Bovine Serum and Bovine Haemoglobin onto Chitosan Film. Adsorption Science and Technology, 30(89); 785–792

Fatimah, I., R. Y. Pradita, and A. Nurfalinda (2016). Plant Extract Mediated of ZnO Nanoparticles by Using Ethanol Extract of Mimosa pudica Leaves and Coffee Powder. Procedia Engineering, 148; 43–48

Fatoni, A., M. A. Afrizal, A. A. Rasyad, and N. i Hidayat (2021). ZnO Nanoparticles and Its Interaction With Chitosan: Profile Spectra and Their Activity Against Bacterial. JKPK (Jurnal Kimia dan Pendidikan Kimia), 6(2); 216–227

Fatoni, A., H. S. Yessica, M. Almi, A. Rendowaty, L. Sirumapea, N. Hidayati, et al. (2022). The Film of Chitosan-ZnO Nanoparticles-CTAB: Synthesis, Characterization and In Vitro Study. Science and Technology Indonesia, 7(1); 58–66

Foster, L. J. R. and J. Butt (2011). Chitosan Films are NOT Antimicrobial. Biotechnology Letters, 33; 417–421

Fouda, A., S. S. Salem, A. R. Wassel, M. F. Hamza, and T. I. Shaheen (2020). Optimization of Green Biosynthesized Visible Light Active CuO/ZnO Nano-photocatalysts for the Degradation of Organic Methylene Blue Dye. Heliyon, 6(9); e04896

Gondal, M., T. F. Qahtan, M. A. Dastageer, Y. Maganda, D. H. Anjum, et al. (2013). Synthesis of Cu/Cu2O Nanoparticles by Laser Ablation in Deionized Water and their Annealing Transformation into CuO Nanoparticles. Journal of Nanoscience and Nanotechnology, 13(8); 5759–5766

Goyal, C., D. Goyal, N. S. Ramgir, M. Navaneethan, Y. Hayakawa, C. Muthamizhchelvan, H. Ikeda, and S. Ponnusamy (2021). Surface Modification of ZnO Nanowires with CuO: A Tool to Realize Highly-sensitive H2S Sensor. Physics of the Solid State, 63; 460–467

Hemalatha, S. and M. Makeswari (2017). Green Synthesis, Characterization and Antibacterial Studies of CuO Nanoparticles from Eichhornia crassipes. Rasayan Journal of Chemistry, 10(3); 838–843

Isnaeni, I., E. Hendradi, and N. Z. Zettira (2020). Inhibitory Effect of Roselle Aqueous Extracts HPMC 6000 Gel on the Growth of Staphylococcus aureus ATCC 25923. Turkish Journal of Pharmaceutical Sciences, 17(2); 190–196

Jan, F. A., R. Ullah, N. Ullah, M. Usman, et al. (2021). Exploring the Environmental and Potential Therapeutic Applications of Myrtus communis L. Assisted Synthesized Zinc Oxide (ZnO) and Iron Doped Zinc Oxide (Fe-ZnO) Nanoparticles. Journal of Saudi Chemical Society, 25(7); 101278

Jayaramudu, T., K. Varaprasad, R. D. Pyarasani, K. K. Reddy, K. D. Kumar, A. Akbari-Fakhrabadi, R. Mangalaraja, and J. Amalraj (2019). Chitosan Capped Copper Oxide/copper Nanoparticles Encapsulated Microbial Resistant Nanocomposite Films. International Journal of Biological Macromolecules, 128; 499–508

Joseph, L., M. George, G. Singh, and P. Mathews (2016). Phytochemical Investigation on Various Parts of Psidium guajava. Annals of Plant Sciences, 5(2); 1265–1268

Kalia, A., M. Kaur, A. Shami, S. K. Jawandha, M. A. Al-ghuthaymi, A. Thakur, and K. A. Abd-Elsalam (2021). Nettle-leaf Extract Derived ZnO/CuO Nanoparticle-biopolymer-based Antioxidant and Antimicrobial Nanocomposite Packaging Films and their Impact on Extending the Post-harvest Shelf Life of Guava Fruit. Biomolecules, 11(2); 224

Kalpana, V., B. A. S. Kataru, N. Sravani, T. Vigneshwari, A. Panneerselvam, and V. D. Rajeswari (2018). Biosynthesis of Zinc Oxide Nanoparticles Using Culture Filtrates of Aspergillus niger: Antimicrobial Textiles and Dye Degradation Studies. OpenNano, 3; 48–55

Khalil, M. M., E. H. Ismail, K. Z. El-Baghdady, and D. Mohamed (2014). Green Synthesis of Silver Nanoparticles Using Olive Leaf Extract and its Antibacterial Activity. Arabian Journal of Chemistry, 7(6); 1131–1139

Krishnan, R. A., O. Mhatre, J. Sheth, S. Prabhu, R. Jain, and P. Dandekar (2020). Synthesis of Zinc Oxide Nanostructures Using Orange Peel Oil for Fabricating Chitosan-zinc Oxide Composite Films and their Antibacterial Activity. Journal of Polymer Research, 27; 1–13

Logpriya, S., V. Bhuvaneshwari, D. Vaidehi, R. SenthilKumar, R. Nithya Malar, B. Pavithra Sheetal, R. Amsaveni, and M. Kalaiselvi (2018). Preparation and Characterization of Ascorbic Acid mediated chitosan–copper Oxide Nanocomposite for Anti-microbial, Sporicidal and Biofilm inhibitory Activity. Journal of Nanostructure in Chemistry, 8; 301–309

López-Mata, M. A., S. Ruiz-Cruz, N. P. Silva-Beltrán, J. D. J. Ornelas-Paz, P. B. Zamudio-Flores, and S. E. Burruel Ibarra (2013). Physicochemical, Antimicrobial and Antioxidant Properties of Chitosan Films Incorporated with Carvacrol. Molecules, 18(11); 13735–13753

Matinise, N., X. Fuku, K. Kaviyarasu, N. Mayedwa, and M. Maaza (2017). ZnO Nanoparticles via Moringa oleifera Green Synthesis: Physical Properties and Mechanism of Formation. Applied Surface Science, 406; 339–347

Mohamed, E. A. (2020). Green Synthesis of Copper and Copper Oxide Nanoparticles Using the Extract of Seedless Dates. Heliyon, 6(1); 03123

Murthy, H. A., T. D. Zeleke, K. Tan, S. Ghotekar, M. W. Alam, R. Balachandran, K.-Y. Chan, P. Sanaulla, M. A. Kumar, and C. Ravikumar (2021). Enhanced Multifunctionality of CuO Nanoparticles Synthesized Using Aqueous Leaf Extract of Vernonia amygdalina plant. Results in Chemistry, 3; 100141

Mydeen, S. S., R. R. Kumar, M. Kottaisamy, and V. Vasantha (2020). Biosynthesis of ZnO Nanoparticles through Extract from Prosopis juliflora Plant Leaf: Antibacterial Activities and a New Approach by Rust-induced Photocatalysis. Journal of Saudi Chemical Society, 24(5); 393–406

Naveed Ul Haq, A., A. Nadhman, I. Ullah, G. Mustafa, M. Yasinzai, I. Khan, et al. (2017). Synthesis Approaches of Zinc Oxide Nanoparticles: the Dilemma of Ecotoxicity. Journal of Nanomaterials, 2017; 1–14

Pantidos, N. and L. E. Horsfall (2014). Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. Journal of Nanomedicine and Nanotechnology, 5(5); 233

Prokhorov, E., G. Luna-Bárcenas, J. M. Yáñez Limón, A. Gómez Sánchez, and Y. Kovalenko (2020). Chitosan-ZnO Nanocomposites Assessed by Dielectric, Mechanical, and Piezoelectric Properties. Polymers, 12(9); 1991

Rahman, P. M., V. A. Mujeeb, K. Muraleedharan, and S. K. Thomas (2018). Chitosan/nano ZnO Composite Films: Enhanced Mechanical, Antimicrobial and Dielectric Properties. Arabian Journal of Chemistry, 11(1); 120–127

Rajendrachari, S., P. Taslimi, A. C. Karaoglanli, O. Uzun, E. Alp, and G. K. Jayaprakash (2021). Photocatalytic Degradation of Rhodamine B (RhB) Dye in Waste Water and Enzymatic Inhibition Study Using Cauliflower Shaped ZnO Nanoparticles Synthesized by a Novel One-pot Green Synthesis Method. Arabian Journal of Chemistry, 14(6); 103180

Saravanakkumar, D., S. Sivaranjani, K. Kaviyarasu, A. Ayeshamariam, B. Ravikumar, S. Pandiarajan, C. Veeralakshmi, M. Jayachandran, and M. Maaza (2018). Synthesis and Characterization of ZnO–CuO Nanocomposites Powder by Modified Perfume Spray Pyrolysis Method and its Antimicrobial Investigation. Journal of Semiconductors, 39(3); 033001

Sharma, S., P. Sanpui, A. Chattopadhyay, and S. S. Ghosh (2012). Fabrication of Antibacterial Silver Nanoparticle-sodium Alginate-chitosan Composite Films. RSC Advances, 2(13); 5837–5843

Sharmila, G., C. Muthukumaran, K. Sandiya, S. Santhiya, R. S. Pradeep, N. M. Kumar, N. Suriyanarayanan, and M. Thiru marimurugan (2018). Biosynthesis, Characterization, and Antibacterial Activity of Zinc Oxide Nanoparticles Derived from Bauhinia tomentosa Leaf Extract. Journal of Nanostructure in Chemistry, 8; 293–299

Shinde, R. S., S. D. Khairnar, M. R. Patil, V. A. Adole, P. B. Koli, V. V. Deshmane, D. K. Halwar, R. A. Shinde, T. B. Pawar, and B. S. Jagdale (2022). Synthesis and Characterization of ZnO/CuO Nanocomposites as an Effective Photocatalyst and Gas Sensor for Environmental Remediation. Journal of Inorganic and Organometallic Polymers and Materials; 1–22

Solanki, P. R., A. Kaushik, V. V. Agrawal, and B. D. Malhotra (2011). Nanostructured Metal Oxide based Biosensors. NPG Asia Materials, 3(1); 17–24

Zhang, D., X.-l. Ma, Y. Gu, H. Huang, and G.-w. Zhang (2020). Green Synthesis of Metallic Nanoparticles and their Potential Applications to Treat Cancer. Frontiers in Chemistry, 8; 799


Ahmad Fatoni (Primary Contact)
Agnes Rendowati
Lasmaryna Sirumapea
Lidya Miranti
Siti Masitoh
Nurlisa Hidayati
Fatoni, A., Rendowati, A. ., Sirumapea, L. ., Miranti, . L. ., Masitoh, S. ., & Hidayati, N. . (2023). Synthesis, Characterization of Chitosan-ZnO/CuO Nanoparticles Film, and its Effect as an Antibacterial Agent of Escherichia coli. Science and Technology Indonesia, 8(3), 373–381.

Article Details

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.