The Film of Chitosan-ZnO Nanoparticles-CTAB : Synthesis, Characterization and In Vitro Study
Abstract
The synthesis of film chitosan- ZnO nanoparticles-CTAB were studied. The aims of this research were synthesis of the film chitosan-ZnO nanoparticles-CTAB, its characterization and, application of the film chitosan-ZnO nanoparticles-CTAB as an antibacterial of Staphylococcus aureus. The film of chitosan-ZnO nanoparticles-CTAB was synthesized by the casting method and characterized by FTIR spectroscopy and X-ray diffraction, respectively. The film of chitosan-ZnO nanoparticles-CTAB was used as an antibacterial agent with the agar disk diffusion method. The result showed that the Zn-O group at the film of chitosan-ZnO nanoparticles-CTAB was detected at a wavenumber between 578-619 cm-1. The band at 2852.72-2854.65 cm-1 is the band of C-H groups in the film of chitosan-ZnO nanoparticles-CTAB. The effect of ZnO nanoparticles-CTAB changed of the physical structure of chitosan. The average of the inhibition zone in the film of chitosan-ZnO nanoparticles-CTAB I, II and III was 10.37 ± 0.55, 11.31± 1.27 and 10.38 ± 0.24 mm respectively.
References
AbdElhady, M.M. 2012. Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric, International Journal of Carbohydrate Chemistry, 12; 1-6.
Al-Thabaiti, S. A., A. Y. Obaid, S. Hussain, and Z. Khan. 2015. Shape-directing role of cetyltrimethylammonium bromide on the morphology of extracellular synthesis of silver nanoparticles. Arabian Journal of Chemistry, 8; 538–544
http://dx.doi.org/10.1016/j.arabjc.2014.11.030
Benhabiles, M.S, H. Lounici, N. Drouiche, M. F. A. Goosen and N. Mameri. 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29 (1); 48-56.
https://doi.org/10.1016/j.foodhyd.2012.02.013
Brasselet, C., G. Pierre, P. Dubessay , M. D. Lafargue, J. Coulon , J. Maupeu, A. V. Courbin ,H. de Baynast, T. Doco , P.Michaud and C. Delattre. 2019. Review modification of chitosan for the generation of functional derivatives. Applied Science, 9; 1321
doi:10.3390/app9071321
Cheba, B. A. 2020. Chitosan: Properties, Modifications and Food Nanobiotechnology. Procedia Manufacturing, 46; 652–658 DOI 10.1016/j.promfg.2020.03.093
Chen, C. H., Y. C. Lin, C. F. Mao and W. T. Liao. 2019. Green synthesis, size control, and antibacterial activity of silver nanoparticles on chitosan flms. Research on Chemical Intermediates, 45; 4463–4472 https://doi.org/10.1007/s11164-019-03842-z
Dananjaya, S.H.S., R. S. Kumar, M. Yang, C. Nikapitiya, J. Lee and M. De Zoysa. 2018. Synthesis, characterization of ZnO-chitosan nanocomposites and evaluation of its antifungal activity against pathogenic Candida albicans. International Journal of Biological Macromolecules, 108 ; 1281–1288
https://doi.org/10.1016/j.ijbiomac.2017.11.046
Daphedar, A and T.C.Taranath. 2018. Green synthesis of zinc nanoparticles using leaf extract of Albizia saman (Jacq.) Merr. and their effect on root meristems of Drimia indica (Roxb.) Jessop. International Journal of Cytology, Cytosystematics and Cytogenetics, 71 (2); 93-102.
https://doi.org/10.1080/00087114.2018.1437980
Dobrucka, R and J. Dugaszewska. 2016. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences, 23; 517–523 http://dx.doi.org/10.1016/j.sjbs.2015.05.016
El Fawala, G., H. Honga, X. Songa , J. Wua , M. Suna , C. Hea , X. Moa , Y. Jiang, and H. Wang. 2020. Fabrication of antimicrobial films based on hydroxyethylcellulose and ZnO for food packaging application. Food Packaging and Shelf Life, 23; 100462
https://doi.org/10.1016/j.fpsl.2020.100462
Estevam, L. S., H.S. Debone, C.M.P. Yoshida and C.F. da Silva. 2012. Adsorption of Bovine Serum and Bovine Haemoglobin onto Chitosan Film. Adsorption Science & Technology, 30 (8/9) ; 785-792
Fatoni A, E. Munarsih, K. Asmadi and N. Hidayati. 2020a. Synthesis and Characterization Chitosan-ZnO nanoparticle and Its Application as antibacterial agent of Staphylococus aureus. Science and Technology Indonesia, 2(1); 1-5. doi.org/10.26554/sti.2020.5.1.1-5
Fatoni, A., H. Hilma, A. A. Rasyad, S. Novriyanti dan N. Hidayati. 2020b. Biosintesis ZnO nanopartikel dari ekstrak air daun jambu biji (Psidium guajava L) dan ion Zn2+ serta interaksinya dengan kitosan sebagai antibakteri Escherichia coli. Jurnal Sains Farmasi & Klinis, 7(2); 151-157. DOI: 10.25077/jsfk.7.2.151-157.2020
Fatoni, A., A. C. Paramita, B. Untari and N. Hidayati. 2020c.Chitosan-CuO Nanoparticles as Antibacterial Shigella dysenteriae: Synthesis, Characterization, and InVitro Study. Jurnal Kimia Sains dan Aplikasi, 23(12); 432-439
https://doi.org/10.14710/jksa.23.12.432-439
Fatoni, A., M. A. Afrizal., A. A. Rasyad and N. Hidayati. 2021. ZnO Nanoparticles and its interaction with chitosan: profile spectra and their cctivity against bacterial. Jurnal Kimia dan Pendidikan Kimia, 6(2); 217-228. DOI : 10.20961/jkpk.v6i2.48000
Foster, L.J.R and Butt, J.2011. Chitosan films are NOT antimicrobial. Biotechnology Letters 33; 417–421. DOI 10.1007/s10529-010-0435-1
Feng, F., Y. Liu, B. Zhao and K. Hu. 2012. Characterization of half N-acetylated chitosan powders and films. Procedia Engineering, 27; 718 – 732
doi:10.1016/j.proeng.2011.12.511
Geetha, D and T. Thilagavathi. 2010. Hydrothermal synthesis of nano zno structures from CTAB. Digest Journal of Nanomaterials and Biostructures, 5(1) ; 297 – 301
Goy, R. C, S.T.B. Morais, and O.B.G. Assis. 2016. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia, 26; 122–127 http://dx.doi.org/10.1016/j.bjp.2015.09.010
Guivar, J. A.R., E. A Sanches,., C. J Magon, and E. G. R Fernandes. 2015. Preparation and characterization of cetyltrimethylammonium bromide (CTAB)-stabilized Fe3O4 nanoparticles for electrochemistry detection of citric acid. Journal of Electroanalytical Chemistry, 755; 158–166. http://dx.doi.org/10.1016/j.jelechem.2015.07.036
Hajji, S, S. B. Khedir, I. H. Mnif, M. Hamdi, I. Jedidi, R. Kallel, S. Boufi, and M. Nasri.2019. Biomedical potential of chitosan-silver nanoparticles with special reference to antioxidant, antibacterial, hemolytic and in vivo cutaneous wound healing effects. Biochimica et Biophysica Acta (BBA): General Subjects, 1863; 241–254
https://doi.org/10.1016/j.bbagen.2018.10.010
Haldorai, Y and J.J. Shim. 2013. Multifunctional chitosan-copper oxide hybrid material : photocatalytic and antibacterial activities. International Journal of Photoenergy, 2013; 1-8. https://doi.org/10.1155/2013/245646
Ibrahim. H. M. M. 2015. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences, 8; 265-275, 2015.
http://dx.doi.org/10.1016/j.jrras.2015.01.007
Isnaeni, E. Hendradi, and N. Z. Zettira. 2020. Inhibitory effect of roselle aqueous extracts-HPMC 6000 gel on the growth of Staphylococcus aureus ATCC 25923”. Turkish Journal of. Pharmacy Science, 17 (2); 190-196, 2020. DOI: 10.4274/tjps.galenos.2019.88709
Iqbal, S, M. F. e-Alam , M. Atif , N. Ahmed, A. ul-Ahmad, N. Amin , R. A. A. Alghamdi, A. Hanif and W. A. Farooq. 2019. Empirical Modeling of Zn/ZnO Nanoparticles Decorated/Conjugated with Fotolon (Chlorine e6) Based Photodynamic Therapy towards Liver Cancer Treatment. Micromachines, 10(60); 1-14. doi:10.3390/mi10010060
Jang, H,. S.H. Lim, J. S. Choi and Y. Park. 2015. Antibacterial properties of cetyltrimethylammonium bromidestabilized green silver nanoparticles against methicillin-resistant Staphylococcus aureus. Archives Pharmacal Research, 38; 1906-1912. DOI 10.1007/s12272-015-0605-8
Jayasuriya, A. C., A. Aryaei, and A. H. Jayatissa. 2013. ZnO nanoparticles induced effects on nanomechanical behavior and cell viability of chitosan films. Material Science & Engineering C Materials for Biological Applications, 33(7); 3688-96. 2013
doi: 10.1016/j.msec.2013.04.057
Joseph, L., M. George, G. Singh, and P. Mathews.2016. Phytochemical investigation on various parts of Psidium guajava. Annals of Plant Sciences, 5(2); 1265-1268. DOI: 10.21746/aps.2016.02.001
Junior, E.A.A., F. X Nobre, G da S Sousa, L. S Cavalcante, M. R de M. C Santos, F. L Souza, and J. M. E de Matos. 2017. Synthesis, growth mechanism, optical properties and catalytic activity of ZnO microcrystals obtained via hydrothermal processing. Royal Society of Chemistry Advances, 7; 24263–24281. DOI: 10.1039/c7ra03277c
Khanmirzaee, S., M. Montazer and A. Pashaee.2018. Dyeing of cotton fabric with antibacterial properties using direct dye and CTAB. Journal of Natural Fibers, 17(2); 1-12. DOI: 10.1080/15440478.2018.1479994
Khalil, M. M. H., , E. H. Ismail, , K. Z. El-Baghdady, and D. Mohamed. 2014.Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 7; 1131-1139
http://dx.doi.org/10.1016/j.arabjc.2013.04.007
Khan, Z., Hussain, J. I and Hashmi, A. A.. 2012. Shape-directing role of cetyltrimethylammonium bromide in the green synthesis of Ag-nanoparticles using Neem (Azadirachta indica) leaf extract. Colloids and Surfaces B: Biointerfaces, 95; 229– 234.
doi:10.1016/j.colsurfb.2012.03.002
Khan, M. F., A.H. Ansari, M. Hameedullah, E. Ahmad, F. M. Husain, Q. Zia, U. Baig, M. R. Zaheer, M. M. Alam, A. M. Khan, Z. A. Al-Othman, I. Ahmad, G. M. Ashraf and G. Aliev.2016. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Scientific Reports, 6; 27689 DOI: 10.1038/srep27689
Kumari, S., P. Rath, A. S. H. Kumar and T. N. Tiwari. 2015. Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environmental Technology & Innovation, 3; 77–85.
https://doi.org/10.1016/j.eti.2015.01.002
Matinise, N., X.G. Fuku, K. Kaviyarasu, N. Mayedwa and M. Maaza, M. 2017. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Applied Surface Science, 406; 339–347.
http://dx.doi.org/10.1016/j.apsusc.2017.01.219
Medina, J., H. Bolaños, L. P. M. Sanchez and J. E. R. Paez. 2018. Controlled synthesis of ZnO nanoparticles and evaluation of their toxicity in Mus musculus mice. International Nano Letters, 8; 165–179 https://doi.org/10.1007/s40089-018-0242-6
Mohamed, N. A and M. M. Fahmy.2012. Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. International Journal of Molecular Sciences, 13; 11194-11209, doi:10.3390/ijms130911194
Muinde, V.M., J.M. Onyari, B.Wamalwa and J.N. Wabomba. 2020. Adsorption of malachite green dye from aqueous solutions using mesoporous chitosan–zinc oxide composite material. Environmental Chemistry and Ecotoxicology, 2;115–125
https://doi.org/10.1016/j.enceco.2020.07.005
Nasrollahzadeh, M., S.S. Momeni and S. M. Sajadi. 2017. Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6. Journal of Colloid and Interface Science, 506; 471–477. doi: 10.1016/j.jcis.2017.07.072
Nainggolan, I., Saisa, H. Agusnar and Z. Alfian. 2020. The Characterization of Chitosan-ZnO Nanoparticles Modified Screen-Printed Copper Electrodes as the Analytical Sensor. Journal of Physics: Conference Series, 1542; 012053. IOP Publishing
doi:10.1088/1742-6596/1542/1/012053
Narayanan, G. N and A. Karthigeyan. 2016. Influence of different concentrations of Cetyltrimethylammonium bromide on morphological, structural and optical properties of Zinc Oxide nanorods. Materials Today: Proceedings, 3; 1762–1767
https://doi.org/10.1016/j.matpr.2016.04.071
Prabhu, Y.T., K.V. Rao, S. Sai and T. Pavani. 2017. A facile biosynthesis of copper nanoparticles: A micro-structural and antibacterial activity investigation. Journal of Saudi Chemical Society, 21; 180-185.
https://doi.org/10.1016/j.jscs.2015.04.002
Preethi, S., K. Abarna, M. Nithyasri, P. Kishore, K. Deepika, R. Ranjithkumar, V. Bhuvaneshwari and D. Bharathi. 2020. Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. International Journal of Biological Macromolecules,164; 2779–2787
https://doi.org/10.1016/j.ijbiomac.2020.08.047
Qiu, B., X. Xu, R. Deng, G. Xia, X. Shang, and P. Zhou. 2019. Construction of chitosan/ZnO nanocomposite film by in situ precipitation. International Journal of Biological Macromolecules, 22; 82-87 doi:10.1016/j.ijbiomac.2018.10.084
Rahman, P. M., V.M. A. Mujeeb, K. Muraleedharan, and S. K. Thomas. 2018.Chitosan/nano ZnO composite films: Enhanced mechanical, antimicrobial and dielectric properties. Arabian Journal of Chemistry, 11(1); 120-127
https://doi.org/10.1016/j.arabjc.2016.09.008
Raj, A and R. Lawerence. 2018. Green synthesis and charcterization of zno nanoparticles from leafs extracts of rosa indica and its antibacterial activity. Rasayan Journal of Chemistry, 11(3), 1339-1348. http://dx.doi.org/10.31788/RJC.2018.1132009
Ramimoghadam, D., M. Z. B. Hussein, and Y.H. T.Yap. 2012.The Effect of Sodium Dodecyl Sulfate (SDS) and Cetyltrimethylammonium Bromide (CTAB) on the Properties of ZnO Synthesized by Hydrothermal Method. International Journal of Molecular Sciences, 13; 13275-13293; doi:10.3390/ijms131013275
Rodrigues, D. A. S., J. M. Moura, G. L. Dotto, T. R. S. Cadaval Jr. And L. A. A. Pinto. 2018. Preparation, Characterization and Dye Adsorption/Reuse of Chitosan-Vanadate Films. Journal of Polymers and the Environment, 26; 2917-2924. https://doi.org/10.1007/s10924-017-1171-6
Sharma, S., P. Sanpui, A. Chattopadhyay and S. S. Ghosh. 2012. Fabrication of antibacterial silver nanoparticle sodium alginate–chitosan composite films. RSC Advances, 2; 5837–5843
DOI: 10.1039/c2ra00006g
Siboni, M. S , A. Khataee , A. Hassani and S. Karaca. 2015.Preparation, characterization and application of a CTAB-modified nanoclay for the adsorption of an herbicide from aqueous solutions: Kinetic and equilibrium studies. Comptes Rendus Chimie, 18; 204-214. http://dx.doi.org/10.1016/j.crci.2014.06.004
Santhoshkumar, J., S. V. Kumar, and S. Rajeshkumar. 2017.Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3; 459–465. doi: 10.1016/j.reffit.2017.05.001
Tamuly, C., M. Hazarika , R. Debnath , R. Saikia , M. Bordoloi , J. Bora and M. R.Das. 2013. Effect of CTAB in biosynthesis of Au-nanoparticles using Gymnocladus assamicus and its biological evaluation. Materials Letters, 113; 103–106
http://dx.doi.org/10.1016/j.matlet.2013.09.065
Usman, M. S., N. A. Ibrahim, K. Shameli, N. Zainuddin and W. Md. Z. W. Yunus.2012. Copper Nanoparticles Mediated by Chitosan: Synthesis and Characterization via Chemical Methods. Molecules, 17; 14928-14936
https://doi.org/10.3390/molecules171214928
Viana, R. B., da Silva, A. B. F., & Pimentel, A. S. (2012). Infrared Spectroscopy of Anionic, Cationic, and Zwitterionic Surfactants. Advances in Physical Chemistry, 2012; 1–14. doi:10.1155/2012/903272
Vijayakumar, S., S. Mahadevan, P. Arulmozhi, S. Sriram, and P. K. Praseetha. 2018. Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Mater. Sci.Semicond. Process, 82; 39–45, doi: 10.1016/j.mssp.2018.03.017
Wu, H and J. Zhang. 2018. Chitosan-based zinc oxide nanoparticle for enhanced anticancer effect in cervical cancer: A physicochemical and biological perspective. Saudi Pharmaceutical Journal, 26; 205–210 https://doi.org/10.1016/j.jsps.2017.12.010
Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.