Antioxidant and Antibacterial Activity of Endophytic Fungi Isolated from Fruit of Sungkai (Peronema canescens)
Abstract
Peronema canescens, often known as sungkai, is widely used and can be found all around Indonesia. The public believes that the leaves may reduce fever and strengthen the immune system. However, the effectiveness of sungkai fruit has not been thoroughly investigated. In this research, we looked at endophytic fungus extracts from sungkai fruit’s that have antioxidant and antibacterial properties. The study’s results will serve as the foundation for further investigation into the development of potential natural chemicals with antioxidant and antibacterial properties. Morphologically, the endophytic fungi isolated from sungkai fruit were identified. The antioxidant and antibacterial properties of endophytic fungal extracts were studied using the DPPH technique and the paper disk diffusion method. By employing molecular identification and column chromatography to separate the active compounds, the most likely endophytic fungal isolates were found based on the results of the bioactivity tests. Using 1D NMR spectroscopic methods, the chemical’s structure was determined, and the results were compared to NMR data for the same compound published in the literature. Fruit of sungkai had 8 strains of endophytic fungus (RBH1-RBH8). Strong antibacterial and very strong antioxidant activity were shown by the RBH5 isolate (IC50 < 20 μg/mL). Pythium periplocum was determined to be the RBH5 isolate based on molecular testing. Pure chemical compound extracted from RBH5 isolates shown highly potent and potent antibacterial and antioxidant effects. The chemical compound was identified by spectroscopy as 3-hydroxy-4(hydroxy(4-hydroxyphenyl)methyl)-γ-butyrolactone. The results of this study serve as the foundation for developing compounds as pharmaceutical raw materials via further research phases.
References
Adamczak, A., M. Ożarowski, and T. M. Karpiński (2019). Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. Journal of Clinical Medicine, 9(1); 109
Alam, B., J. Lˇı, Q. Gě, M. A. Khan, J. Gong, S. Mehmood, ¯Y. Yuán, and W. Gong (2021). Endophytic Fungi: From ˇ Symbiosis to Secondary Metabolite Communications or Vice Versa? Frontiers in Plant Science, 12; 3060
Baliyan, S., R. Mukherjee, A. Priyadarshini, A. Vibhuti, A. Gupta, R. P. Pandey, and C.-M. Chang (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4); 1326
Bělonožníková, K., K. Vaverová, T. Vaněk, M. Kolařík, V. Hysková, R. Vaňková, P. Dobrev, T. Křížek, O. Hodek, ` and K. Čokrtová (2020). Novel Insights into the Effect of Pythium strains on Rapeseed Metabolism. Microorganisms, 8(10); 1472
Bouqoufi, A., L. Lahlou, F. Ait El Hadj, M. Abdessadek, M. Obtel, and Y. Khabbal (2023). Prevalence, Motivation, and Associated Factors of Medicinal Herbs Consumption in Pregnant Women from Eastern Mediterranean Regional Office: A Systematic Review. Pharmaceutical Biology, 61(1); 1065–1081
Brazkova, M., G. Angelova, D. Mihaylova, P. Stefanova, M. Pencheva, V. Gledacheva, I. Stefanova, and A. Krastanov (2022). Bioactive Metabolites from the Fruiting Body and Mycelia of Newly-Isolated Oyster Mushroom and Their Effect on Smooth Muscle Contractile Activity. Foods, 11(24); 3983
Burel, C., A. Kala, and L. Purevdorj-Gage (2021). Impact of pH on Citric Acid Antimicrobial Activity against Gram-Negative Bacteria. Letters in Applied Microbiology, 72(3); 332–340
Caruso, D. J., E. A. Palombo, S. E. Moulton, and B. Zaferanloo (2022). Exploring the Promise of Endophytic Fungi: A Review of Novel Antimicrobial Compounds. Microorganisms, 10(10); 1990
Chugh, R. M., P. Mittal, N. Mp, T. Arora, T. Bhattacharya, H. Chopra, S. Cavalu, and R. K. Gautam (2022). Fungal Mushrooms: A Natural Compound with Therapeutic Applications. Frontiers in Pharmacology, 13; 925387
Ding, Z., T. Tao, L. Wang, Y. Zhao, H. Huang, D. Zhang, M. Liu, Z. Wang, and J. Han (2019). Bioprospecting of Novel and Bioactive Metabolites from Endophytic Fungi Isolated from Rubber Tree Ficus elastica Leaves. Journal of Microbiology and Biotechnology, 29(5); 731–738
Dos Reis, J. B. A., A. S. Lorenzi, and H. M. M. do Vale (2022). Methods Used for the Study of Endophytic Fungi: A Review on Methodologies and Challenges, and Associated Tips. Archives of Microbiology, 204(11); 675
Elfita, O. Rian, Mardiyanto, W. Hary, S. Arum, and S. S. A. Nasution (2023). Bioactive Compounds of Endophytic Fungi Lasiodiplodia theobromae Isolated from the Leaves of Sungkai (Peronema canescens). Biointerface Research in Applied Chemistry, 13(6)
Elfita, E., R. Oktiansyah, M. Mardiyanto, H. Widjajanti, and A. Setiawan (2022). Antibacterial and Antioxidant Activity of Endophytic Fungi Isolated from Peronema canescens Leaves. Biodiversitas Journal of Biological Diversity, 23(9); 170–177
Elfita, M., Muharni, and M. A. Sudrajat (2014). Identification of New Lactone Derivatives Isolated from Trichoderma sp., an Endophytic Fungus of Brotowali (Tinaspora crispa). HAYATI Journal of Biosciences, 21(1); 15–20
Ferraz, C. R., T. T. Carvalho, M. F. Manchope, N. A. Artero, F. S. Rasquel-Oliveira, V. Fattori, R. Casagrande, and W. A. Verri Jr (2020). Therapeutic Potential of Flavonoids in Pain and Inflammation: Mechanisms of Action, Pre-Clinical and Clinical Data, and Pharmaceutical Development. Molecules, 25(3); 762
García-Latorre, C., S. Rodrigo, and O. Santamaría (2023). Potential of Fungal Endophytes Isolated from Pasture Species in Spanish Dehesas to Produce Enzymes under Salt Conditions. Microorganisms, 11(4); 908
Gupta, A., V. Meshram, M. Gupta, S. Goyal, K. A. Qureshi, M. Jaremko, and K. K. Shukla (2023). Fungal Endophytes: Microfactories of Novel Bioactive Compounds with Therapeutic Interventions; A Comprehensive Review on the Biotechnological Developments in the Field of Fungal Endophytic Biology over the Last Decade. Biomolecules, 13(7); 1038
Hashem, A. H., M. S. Attia, E. K. Kandil, M. M. Fawzi, A. S. Abdelrahman, M. S. Khader, M. A. Khodaira, A. E. Emam, M. A. Goma, and A. M. Abdelaziz (2023). Bioactive Compounds and Biomedical Applications of Endophytic Fungi: A Recent Review. Microbial Cell Factories, 22(1); 1-23
Khalil, A. M. A., S. E.-D. Hassan, S. M. Alsharif, A. M. Eid, E. E.-D. Ewais, E. Azab, A. A. Gobouri, A. Elkelish, and A. Fouda (2021). Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra pachyclada as Plant Growth-Promoting. Biomolecules, 11(2); 140
Khanna, K., S. K. Kohli, R. Kaur, A. Bhardwaj, V. Bhardwaj, P. Ohri, A. Sharma, A. Ahmad, R. Bhardwaj, and P. Ahmad (2021). Herbal Immune-Boosters: Substantial Warriors of Pandemic Covid-19 Battle. Phytomedicine, 85; 153361
Kubiak-Tomaszewska, G., P. Roszkowski, E. Grosicka-Maciąg, P. Strzyga-Łach, and M. Struga (2022). Effect of Hydroxyl Groups Esterification with Fatty Acids on the Cytotoxicity and Antioxidant Activity of Flavones. Molecules, 27(2); 420
Latief, M., P. M. Sari, L. T. Fatwa, I. L. Tarigan, and H. P. V. Rupasinghe (2021a). Antidiabetic Activity of Sungkai (Peronema canescens Jack) Leaves Ethanol Extract on the Male Mice Induced Alloxan Monohydrate. Pharmacology and Clinical Pharmacy Research, 6(2); 64
Latief, M., I. L. Tarigan, P. M. Sari, and F. E. Aurora (2021b). Aktivitas Antihiperurisemia Ekstrak Etanol Daun Sungkai (Peronema canescens Jack) Pada Mencit Putih Jantan. Pharmacon: Jurnal Farmasi Indonesia, 18(1); 23–37 (in Indonesia)
Lavado, R. S. and V. M. Chiocchio (2023). Symbiosis of Plants with Mycorrhizal and Endophytic Fungi. Plants, 12(8)
Liu, P., Y. Tan, J. Yang, Y. Wang, Q. Li, B. Sun, X. Xing, D. Sun, S. Yang, and G. Ding (2023). Bioactive Secondary Metabolites from Endophytic Strains of Neocamarosporium betae Collected from Desert Plants. Frontiers in Plant Science, 14; 1142212
Mucha, P., A. Skoczyńska, M. Małecka, P. Hikisz, and E. Budzisz (2021). Overview of the Antioxidant and Anti-Inflammatory Activities of Selected Plant Compounds and Their Metal Ions Complexes. Molecules, 26(16); 4886
Musa, M., F. G. Jan, M. Hamayun, G. Jan, S. A. Khan, G. Rehman, S. Ali, and I.-J. Lee (2023). An Endophytic Fungal Isolate Paecilomyces lilacinus Produces Bioactive Secondary Metabolites and Promotes Growth of Solanum lycopersicum under Heavy Metal Stress. Agronomy, 13(3); 883
Noman, E. A., A. A. Al-Gheethi, B. A. Talip, R. M. S. R. Mohamed, R. Almoheer, F. A. Al-Wrafy, N. Al Shorgani, and H. A. El Enshasy (2023). New Fungal Strains from Peat Soil in Malaysia: Morphological and Molecular Characteristics. Sustainability, 15(7); 5902
Ocan, M., N. Loyce, K. O. Ojiambo, A. A. Kinengyere, R. Apunyo, and E. A. Obuku (2023). Efficacy of Antimalarial Herbal Medicines Used by Communities in Malaria Affected Regions Globally: A Protocol for Systematic Review and Evidence and Gap Map. BMJ Open, 13(7); e069771
Oktiansyah, R., E. Elfita, H. Widjajanti, A. Setiawan, P. Hariani, and N. Hidayati (2023a). Endophytic Fungi Isolated from the Root Bark of Sungkai (Peronema canescens) As Anti-Bacterial and Antioxidant. Journal of Medical Pharmaceutical and Allied Sciences, 12(2320); 8–15
Oktiansyah, R., E. Elfita, H. Widjajanti, A. Setiawan, M. Mardiyanto, and S. S. Nasution (2023b). Antioxidant and Antibacterial Activity of Endophytic Fungi Isolated from the Leaves of Sungkai (Peronema canescens). Tropical Journal of Natural Product Research, 7(3); 2596–2604
Oktiansyah, R., H. Widjajanti, A. Setiawan, S. S. A. Nasution, Mardiyanto, and E. Elfita (2023c). Antibacterial and Antioxidant Activity of Endophytic Fungi Extract Isolated from Leaves of Sungkai (Peronema canescens). Science and Technology Indonesia, 8(2); 170–177
Onyeaghala, A. A., A. F. Anyiam, D. C. Husaini, E. O. Onyeaghala, and E. Obi (2023). Herbal Supplements As Treatment Options for Covid-19: A Call for Clinical Development of Herbal Supplements for Emerging and Re-Emerging Viral Threats in Sub-Saharan Africa. Scientific African, 20; e01627
Pitt, J. I. and A. D. Hocking (2009). Fungi and food spoilage, volume 519. Springer
Platzer, M., S. Kiese, T. Tybussek, T. Herfellner, F. Schneider, U. Schweiggert-Weisz, and P. Eisner (2022). Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Frontiers in Nutrition, 9; 4–8
Poveda Arias, J., P. Baptista, S. Sacristán, and P. Velasco (2022). Beneficial Effects of Fungal Endophytes in Major Agricultural Crops. Frontiers in Plant Science, 13: 1061112, 13; 1–5
Pradipta, I. S., K. Aprilio, R. M. Febriyanti, Y. F. Ningsih, M. A. A. Pratama, R. B. Indradi, V. A. Gatera, S. D. Alfian, A. Iskandarsyah, and R. Abdulah (2023). Traditional Medicine Users in a Treated Chronic Disease Population: A Cross-Sectional Study in Indonesia. BMC Complementary Medicine and Therapies, 23(1); 1–9
Priyashantha, A. H., D.-Q. Dai, D. J. Bhat, S. L. Stephenson, I. Promputtha, P. Kaushik, S. Tibpromma, and S. C. Karunarathna (2023). Plant–Fungi Interactions: Where It Goes? Biology, 12(6); 809
Rahardhian, M. R. R., Y. Susilawati, A. Sumiwi, M. Muktiwardoyo, and Muchtaridi (2022). A Review of Sungkai (Peronema canescens): Traditional Usage, Phytoconstituent, and Pharmacological Activities. International Journal of Applied Pharmaceutics, 14
Rehman, B., S. A. Khan, M. Hamayun, A. Iqbal, and I. Lee (2022). Potent Bioactivity of Endophytic Fungi Isolated from Moringa oleifera Leaves. BioMed Research International, 2022; 2461021
Shen, N., Z. Chen, G. Cheng, W. Lin, Y. Qin, Y. Xiao, H. Chen, Z. Tang, Q. Li, M. Yuan, and T. Bu (2023). Diversity, Chemical Constituents and Biological Activities of Endophytic Fungi from Alisma orientale (Sam.) Juzep. Frontiers in Microbiology, 14; 1–16
Silva, D. P. D., M. S. Cardoso, and A. J. Macedo (2022). Endophytic Fungi As a Source of Antibacterial Compounds—A Focus on Gram-Negative Bacteria. Antibiotics, 11(11); 1509
Song, L.-s., J. Huo, L. Wan, L. Pan, N. Jiang, J. Fu, S. Wei, and L. He (2023). Differences and Biocontrol Potential of Haustorial Endophytic Fungi from Taxillus chinensis on Different Host Plants. BMC Microbiology, 23(1); 128
Spiegel, M., K. Kapusta, W. Kołodziejczyk, J. Saloni, B. Żbikowska, G. A. Hill, and Z. Sroka (2020). Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules, 25(13); 3088
Srinivasa, C., G. Mellappa, S. M. Patil, R. Ramu, B. Shreevatsa, C. Dharmashekar, S. P. Kollur, A. Syed, and C. Shivamallu (2022). Plants and Endophytes–A Partnership for the Coumarin Production through the Microbial Systems. Mycology, 13(4); 243–256
Talukdar, R., S. Padhi, A. K. Rai, M. Masi, A. Evidente, D. K. Jha, A. Cimmino, and K. Tayung (2021). Isolation and Characterization of an Endophytic Fungus Colletotrichum coccodes Producing Tyrosol from Houttuynia cordata Thunb. Using ITS2 RNA Secondary Structure and Molecular Docking Study. Frontiers in Bioengineering and Biotechnology, 9; 650247
Tamura, K., G. Stecher, and S. Kumar (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7); 3022–3027
Tan, W., K. Nagarajan, V. Lim, J. Azizi, K. Khaw, W. Tong, C. Leong, and N. J. Chear (2022). Metabolomics Analysis and Antioxidant Potential of Endophytic Diaporthe fraxini ED2 Grown in Different Culture Media. Journal of Fungi, 8(5); 519
Thitla, T., J. Kumla, S. Hongsanan, C. Senwanna, S. Khuna, S. Lumyong, and N. Suwannarach (2023). Exploring Diversity Rock-Inhabiting Fungi from Northern Thailand: A New Genus and Three New Species Belonged to the Family Herpotrichiellaceae. Frontiers in Cellular and Infection Microbiology, 13; 1–24
Vaou, N., E. Stavropoulou, C. Voidarou, Z. Tsakris, G. Rozos, C. Tsigalou, and E. Bezirtzoglou (2022). Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics, 11(8); 1014
Villena-Tejada, M., I. Vera-Ferchau, A. Cardona-Rivero, R. Zamalloa-Cornejo, M. Quispe-Florez, Z. Frisancho-Triveño, R. C. Abarca-Meléndez, S. G. Alvarez-Sucari, C. R. Mejia, and J. A. Yañez (2021). Use of Medicinal Plants for COVID-19 Prevention and Respiratory Symptom Treatment during the Pandemic in Cusco, Peru: A Cross-Sectional Survey. PLOS ONE, 16(9); e0257165
Walsh, T. J., R. T. Hayden, and D. H. Larone (2018). Larone’s Medically Important Fungi: A Guide to Identification. John Wiley & Sons
Wang, H., Z. Liu, F. Duan, Y. Chen, K. Qiu, Q. Xiong, H. Lin, J. Zhang, and H. Tan (2023). Isolation, Identification, and Antibacterial Evaluation of Endophytic Fungi from Gannan Navel Orange. Frontiers in Microbiology, 14; 1172629
Watanabe, T. (2010). Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key to Species. CRC Press
Wen, J., S. K. Okyere, S. Wang, J. Wang, L. Xie, Y. Ran, and Y. Hu (2022). Endophytic Fungi: An Effective Alternative Source of Plant-Derived Bioactive Compounds for Pharmacological Studies. Journal of Fungi, 8(2); 205
Widjajanti, H., E. Nurnawati, and E. D. Zahwa (2022). Optimization of Antibacterial Production of Endophytic Fungi with Various Sources of C, N, and pH using The Response Surface Methodology. Science and Technology Indonesia, 7(2); 149–157
Xu, K., X. Li, D. Zhao, and P. Zhang (2021). Antifungal Secondary Metabolites Produced by the Fungal Endophytes: Chemical Diversity and Potential Use in the Development of Biopesticides. Frontiers in Microbiology, 12; 689527
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.