Secondary Metabolite of Endophytic Fungi Daldinia eschscholtzii from The Leaves of Syzygium polyanthum
Abstract
Salam (Syzygium polyanthum) is a plant that is often used by Indonesian people as traditional medicine. The leaves are consumed to treat various diseases. This study reports the endophytic fungi found from S. polyanthum leaves and its secondary metabolites. Endophytic fungi species were determined through morphological and molecular identification. Potato Dextrose Broth medium was used for the cultivation process and ethyl acetate was used as a solvent for the extraction process. Antioxidant tests was carried out by using the DPPH method. Chromatographic techniques were used for the isolation of secondary metabolite and spectroscopic analysis was carried out to identify their chemical structures. The results of morphological and molecular analysis showed that the sample was Daldinia eschscholtzii. The secondary metabolite obtained from this endophytic fungus was idetified as fonsecinone A with good antioxidant activity. The secondary metabolite have the potential to become a source antioxidants through further research.
References
Adamczak, A., Ożarowski, M., & Karpiński, T. M. (2020). Antibacterial activity of some flavonoids and organic acids widely distributed in plants. Journal of Clinical Medicine, 9(1).
Adedayo, A. A., & Babalola, O. O. (2023). Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. Journal of Fungi, 9(2).
Aditya, R., Santoso, B., & Widjiati, W. (2022). Anti-inflammatory and antioxidant potential of Syzygium polyanthum (Wight) Walp. bioactive compounds in polycystic ovary syndrome: An in silico study. Journal of Pharmacy and Pharmacognosy Research, 10(4), 725–736.
Ahmed, A. M., Mahmoud, B. K., Millán-Aguiñaga, N., Abdelmohsen, U. R., & Fouad, M. A. (2023). The endophytic Fusarium strains: a treasure trove of natural products. RSC Advances, 13(2), 1339–1369.
Amir Rawa, M. S., Mazlan, M. K. N., Ahmad, R., Nogawa, T., & Wahab, H. A. (2022). Roles of Syzygium in Anti-Cholinesterase, Anti-Diabetic, Anti-Inflammatory, and Antioxidant: From Alzheimer’s Perspective. Plants, 11(11).
Amr, K., Ibrahim, N., Elissawy, A. M., & Singab, A. N. B. (2023). Unearthing the fungal endophyte Aspergillus terreus for chemodiversity and medicinal prospects: a comprehensive review. Fungal Biology and Biotechnology, 10(1), 1–33.
Ayoka, T. O., Ezema, B. O., Eze, C. N., & Nnadi, C. O. (2022). Antioxidants for the Prevention and Treatment of Non-communicable Diseases. Journal of Exploratory Research in Pharmacology, 000(000), 000–000.
Aytac, S., Gundogdu, O., Bingol, Z., & Gulcin, İ. (2023). Synthesis of Schiff Bases Containing Phenol Rings and Investigation of Their Antioxidant Capacity, Anticholinesterase, Butyrylcholinesterase, and Carbonic Anhydrase Inhibition Properties. Pharmaceutics, 15(3), 779.
Campos, F. R., Barison, A., Daolio, C., Ferreira, A. G., & Rodrigues-Fo, E. (2005). Complete 1H and 13C NMR assignments of aurasperone A and fonsecinone A, two bis-naphthopyrones produced by Aspergillus aculeatus. Magnetic Resonance in Chemistry, 43(11), 962–965.
Chen, W., Wang, J., Song, J., Sun, Q., Zhu, B., & Qin, L. (2023). Exogenous and Endophytic Fungal Communities of Dendrobium nobile Lindl. across Different Habitats and Their Enhancement of Host Plants’ Dendrobine Content and Biomass Accumulation. ACS Omega.
Chigozie Victor, Okezie Moses, Ajaegbu Eze, Okoye Festus, & Esimone Charles. (2020). Isolation, identification, and evaluation of biological activities of Daldinia eschscholtzii, an endophytic fungus isolated from the leaves of Musa paradisiaca. GSC Biological and Pharmaceutical Sciences, 12(1), 216–228.
Chutulo, E. (2020). Daldinia eschscholtzii: an endophytic fungus isolated from Psidium guajava as an alternative source of bioactive secondary metabolites. Asian Journal of Mycology, 3(1), 376–398.
Diksha, D., Gupta, S. K., Gupta, P., Banerjee, U. C., & Kalita, D. (2023). Antibacterial Potential of Gold Nanoparticles Synthesized From Leaf Extract of Syzygium cumini Against Multidrug-Resistant Urinary Tract Pathogens. Cureus, 15(2), 2–7.
Dobros, N., Zawada, K. D., & Paradowska, K. (2023). Phytochemical Profiling, Antioxidant and Anti-Inflammatory Activity of Plants Belonging to the Lavandula Genus. Molecules, 28(1).
Elawady, M. E., Hamed, A. A., Alsallami, W. M., & Gabr, E. Z. (2023). Bioactive Metabolite from Endophytic Aspergillus versicolor Antioxidant Activities : In Vitro and In Silico Studies.
Elfita, Oktiansyah, R., Mardiyanto, Widjajanti, H., Setiawan, A., & Nasution, S. S. A. (2023). Bioactive Compounds of Endophytic Fungi Lasiodiplodia theobromae Isolated From The Leaves of Sungkai (Peronema canescens). Biointerface Research in Applied Chemistry, 13(6).
Elshafie, H. S., Camele, I., & Mohamed, A. A. (2023). A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. International Journal of Molecular Sciences, 24(4).
Flieger, J., Flieger, W., & Baj, J. (2021). Antioxidants : Classification , Natural Sources , Activity / Capacity. Materials, 14(4135), 1–54.
Gu, H., Zhang, S., Liu, L., Yang, Z., Zhao, F., & Tian, Y. (2022). Antimicrobial Potential of Endophytic Fungi From Artemisia argyi and Bioactive Metabolites From Diaporthe sp. AC1. Frontiers in Microbiology, 13(June), 1–13.
Hasan, S., Kayed, K., Ghemrawi, R., Bataineh, N. Al, Mahgoub, R. E., Audeh, R., Aldulaymi, R., Atatreh, N., & Ghattas, M. A. (2023). Molecular Modelling Study and Antibacterial Evaluation of Diphenylmethane Derivatives as Potential FabI Inhibitors. Molecules (Basel, Switzerland), 28(7).
Heryanto, R., Putra, C. A., Khalil, M., Rafi, M., Putri, S. P., Karomah, A. H., & Batubara, I. (2023). Antioxidant Activity and Metabolite Profiling of Xylocarpus granatum Extracts Using Gas Chromatography–Mass Spectrometry. Metabolites, 13(2).
Khalil, A. M. A., Hassan, S. E. D., Alsharif, S. M., Eid, A. M., Ewais, E. E. D., Azab, E., Gobouri, A. A., Elkelish, A., & Fouda, A. (2021). Isolation and characterization of fungal endophytes isolated from medicinal plant ephedra pachyclada as plant growth-promoting. Biomolecules, 11(2), 1–18.
Khruengsai, S., Pripdeevech, P., Tanapichatsakul, C., Srisuwannapa, C., D’Souza, P. E., & Panuwet, P. (2021). Antifungal properties of volatile organic compounds produced by Daldinia eschscholtzii MFLUCC 19-0493 isolated from Barleria prionitis leaves against Colletotrichum acutatum and its postharvest infections on strawberry fruits. PeerJ, 9.
Kour, D., Yadav, N., & Yadav, A. N. (2023). Endophytic Fungi as Emerging Bioresources for Bioactive Compounds for Sustainable Development. Journal of Applied Biology and Biotechnology, 11(1), i–iii.
Laoué, J., Fernandez, C., & Ormeño, E. (2022). Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites under Climate Stress. Plants, 11(2).
Li, Z., Xiong, K., Wen, W., Li, L., & Xu, D. (2023). Functional Endophytes Regulating Plant Secondary Metabolism: Current Status, Prospects and Applications. International Journal of Molecular Sciences, 24(2).
Liao, H. X., Shao, T. M., Mei, R. Q., Huang, G. L., Zhou, X. M., Zheng, C. J., & Wang, C. Y. (2019). Bioactive Secondary Metabolites from the Culture of the Mangrove-Derived Fungus Daldinia eschscholtzii HJ004. Marine Drugs, 17(12), 1–9.
Liao, H. X., Zheng, C. J., Huang, G. L., Mei, R. Q., Nong, X. H., Shao, T. M., Chen, G. Y., & Wang, C. Y. (2019). Bioactive Polyketide Derivatives from the Mangrove-Derived Fungus Daldinia eschscholtzii HJ004. Journal of Natural Products, 82(8), 2211–2219.
Liu, H. X., Tan, H. B., Li, S. N., Chen, Y. C., Li, H. H., & Zhang, W. M. (2019). Two new metabolites from Daldinia eschscholtzii, an endophytic fungus derived from Pogostemon cablin. Journal of Asian Natural Products Research, 21(2), 150–156.
Liu, P., Tan, Y., Yang, J., Wang, Y.-D., Li, Q., Sun, B.-D., Xing, X.-K., Sun, D.-A., Yang, S.-X., & Ding, G. (2023). Bioactive secondary metabolites from endophytic strains of Neocamarosporium betae collected from desert plants. Frontiers in Plant Science, 14(March), 1–9.
Liu, Y., Qian, J., Li, J., Xing, M., Grierson, D., Sun, C., Xu, C., Li, X., & Chen, K. (2022). Hydroxylation decoration patterns of flavonoids in horticultural crops: chemistry, bioactivity, and biosynthesis. Horticulture Research, 9(November 2021).
López-Pedrouso, M., Lorenzo, J. M., & Franco, D. (2022). Advances in Natural Antioxidants for Food Improvement. Antioxidants, 11(9), 1–5.
Lv, Q. Z., Long, J. T., Gong, Z. F., Nong, K. Y., Liang, X. M., Qin, T., Huang, W., & Yang, L. (2021). Current State of Knowledge on the Antioxidant Effects and Mechanisms of Action of Polyphenolic Compounds. Natural Product Communications, 16(7).
Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2(2), 48–78.
Masoudi Khorasani, F., Ganjeali, A., Asili, J., & Cheniany, M. (2023). Beneficial effects of endophytic fungi inoculation on tanshinones and phenolic compounds of Salvia abrotanoides. Iranian Journal of Basic Medical Sciences, 26(4), 408–413.
Moazzen, A., Öztinen, N., Ak-Sakalli, E., & Koşar, M. (2022). Structure-antiradical activity relationships of 25 natural antioxidant phenolic compounds from different classes. Heliyon, 8(9).
Mulyani, Y., Sinaga, S. E., & Supratman, U. (2023). Phytochemistry and Biological Activities of Endophytic Fungi from the Meliaceae Family. Molecules, 28(2).
Mutha, R. E., Tatiya, A. U., & Surana, S. J. (2021). Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Future Journal of Pharmaceutical Sciences, 7(1).
Ng, K. P., Chan, C. L., Yew, S. M., Yeo, S. K., Toh, Y. F., Looi, H. K., Na, S. L., Lee, K. W., Yee, W. Y., & Kuan, C. S. (2016). Identification and characterization of Daldinia eschscholtzii isolated from skin scrapings, nails, and blood. PeerJ, 2016(12).
Nwozo, O. S., Effiong, E. M., Aja, P. M., & Awuchi, C. G. (2023). Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review. International Journal of Food Properties, 26(1), 359–388.
Oktiansyah, R., Elfita, E., Widjajanti, H., Setiawan, A., Hariani, P. L., & Hidayati, N. (2023). Endophytic fungi isolated from the root bark of sungkai ( Peronema canescens ) as Anti-bacterial and antioxidant. Journal of Medical Pharmaceutical and Allied Sciences, 12(2320), 8–15.
Oktiansyah, R., Elfita, E., Widjajanti, H., Setiawan, A., Mardiyanto, M., & Nasution, S. S. A. (2023). Antioxidant and Antibacterial Activity of Endophytic Fungi Isolated from The Leaves of Sungkai (Peronema canescens). Tropical Journal of Natural Product Research, 7(3), 2596–2604.
Oktiansyah, R., Widjajanti, H., Setiawan, A., Nasution, S. Sa. A., Mardiyanto, M., & Elfita. (2023). Antibacterial and Antioxidant Activity of Endophytic Fungi Extract Isolated from Leaves of Sungkai (Peronema canescens). Science and Technology Indonesia, 8(2), 170–177.
Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., & Lewandowski, W. (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 14(8), 1–24.
Platzer, M., Kiese, S., Tybussek, T., Herfellner, T., Schneider, F., Schweiggert-Weisz, U., & Eisner, P. (2022). Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Frontiers in Nutrition, 9(April), 4–8.
Rivai, H., Yulianti, S., & Chandra, B. (2019). 7092 CODEN(USA): PCJHBA Qualitative and Quantitative Analysis of Hexane, Acetone, Ethanol and Water Extract from Bay Leaves (Syzygium polyanthum (Wight) Walp.). The Pharmaceutical and Chemical Journal, 6(3), 13–20.
Rodrigo, S., García-Latorre, C., & Santamaria, O. (2022). Metabolites produced by fungi against fungal phytopathogens: Review, implementation and perspectives. Plants, 11(1), 1–18.
Sabandar, C. W., Jalil, J., Ahmat, N., Aladdin, N. A., Zawawi, N. K. N. A., & Sahidin, I. (2022). Anti-Inflammatory and Antioxidant Activity of Syzygium polyanthum (Wight) Walp. Sains Malaysiana, 51(5), 1475–1485.
Šamec, D., Karalija, E., Šola, I., Vujčić Bok, V., & Salopek-Sondi, B. (2021). The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants, 10(1), 1–24.
Samodien, E., Johnson, R., Pheiffer, C., Mabasa, L., Erasmus, M., Louw, J., & Chellan, N. (2019). Diet-induced hypothalamic dysfunction and metabolic disease, and the therapeutic potential of polyphenols. Molecular Metabolism, 27(June), 1–10.
Song, Z., Sun, Y. J., Xu, S., Li, G., Yuan, C., & Zhou, K. (2023). Secondary metabolites from the Endophytic fungi Fusarium decemcellulare F25 and their antifungal activities. Frontiers in Microbiology, 14(February).
Stan, D., Enciu, A. M., Mateescu, A. L., Ion, A. C., Brezeanu, A. C., Stan, D., & Tanase, C. (2021). Natural Compounds With Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Frontiers in Pharmacology, 12(September), 1–25.
Stelmasiewicz, M., Świątek, Ł., Gibbons, S., & Ludwiczuk, A. (2023). Bioactive Compounds Produced by Endophytic Microorganisms Associated with Bryophytes-The “Bryendophytes.” Molecules (Basel, Switzerland), 28(7).
Stuper-Szablewska, K., Szablewski, T., Przybylska-Balcerek, A., Szwajkowska-Michałek, L., Krzyżaniak, M., Świerk, D., Cegielska-Radziejewska, R., & Krejpcio, Z. (2023). Antimicrobial Activities Evaluation and Phytochemical Screening of Some Selected Plant Materials Used in Traditional Medicine. Molecules, 28(1), 1–20.
Suebrasri, T., Somteds, A., Harada, H., Kanokmedhakul, S., Jogloy, S., Ekprasert, J., Lumyong, S., & Boonlue, S. (2020). Novel endophytic fungi with fungicidal metabolites suppress sclerotium disease. Rhizosphere, 16(August), 100250.
Świsłocka, R., Świderski, G., Nasiłowska, J., Sokołowska, B., Wojtczak, A., & Lewandowski, W. (2023). Research on the Electron Structure and Antimicrobial Properties of Mandelic Acid and Its Alkali Metal Salts. International Journal of Molecular Sciences, 24(4).
Syamsia, S., Idhan, A., Firmansyah, A. P., Noerfitryani, N., Rahim, I., Kesaulya, H., & Armus, R. (2021). Combination on endophytic fungal as the plant growth-promoting fungi (PGPF) on cucumber (cucumis sativus). Biodiversitas, 22(3), 1194–1202.
Tammam, M. A., Gamal El-Din, M. I., Abood, A., & El-Demerdash, A. (2023). Recent advances in the discovery, biosynthesis, and therapeutic potential of isocoumarins derived from fungi: a comprehensive update. RSC Advances, 13(12), 8049–8089.
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027.
Thebti, A., Meddeb, A., Ben Salem, I., Bakary, C., Ayari, S., Rezgui, F., Essafi-Benkhadir, K., Boudabous, A., & Ouzari, H.-I. (2023). Antimicrobial Activities and Mode of Flavonoid Actions. Antibiotics, 12(2), 225.
Uddin, A. B. M. N., Hossain, F., Reza, A. S. M. A., Nasrin, M. S., & Alam, A. H. M. K. (2022). Traditional uses, pharmacological activities, and phytochemical constituents of the genus Syzygium: A review. Food Science and Nutrition, 10(6), 1789–1819.
Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A., & Jaremko, M. (2022). Therapeutic Agent. Molecules, 25(1), 1–39.
Veljković, M., Pavlović, D. R., Stojanović, N. M., Džopalić, T., & Popović Dragonjić, L. (2022). Behavioral and Dietary Habits That Could Influence Both COVID-19 and Non-Communicable Civilization Disease Prevention-What Have We Learned Up to Now? Medicina (Kaunas, Lithuania), 58(11).
Walsh, T. J., Hayden, R. T., & Larone, D. H. (2018). Larone’s Medically Important Fungi. In Larone’s Medically Important Fungi.
Wang, H., Zhang, R., Duan, Y., Jiang, W., Chen, X., Shen, X., Yin, C., & Mao, Z. (2021). The endophytic strain trichoderma asperellum 6s-2: An efficient biocontrol agent against apple replant disease in china and a potential plant-growth-promoting fungus. Journal of Fungi, 7(12).
Watanabe, T. (2010). Pictorial Atlas of Soil and Seed Fungi. In Pictorial Atlas of Soil and Seed Fungi.
Wen, J., Okyere, S. K., Wang, S., Wang, J., Xie, L., Ran, Y., & Hu, Y. (2022). Endophytic Fungi: An Effective Alternative Source of Plant‐Derived Bioactive Compounds for Pharmacological Studies. Journal of Fungi, 8(2).
Widyawati, T., Yusoff, N. A., Bello, I., Asmawi, M. Z., & Ahmad, M. (2022). Bioactivity-Guided Fractionation and Identification of Antidiabetic Compound of Syzygium polyanthum (Wight.)’s Leaf Extract in Streptozotocin-Induced Diabetic Rat Model. Molecules, 27(20).
Wutthiwong, N., Suthiphasilp, V., Pintatum, A., Suwannarach, N., Kumla, J., Lumyong, S., Maneerat, T., Charoensup, R., Cheenpracha, S., Limtharakul, T., Pyne, S. G., & Laphookhieo, S. (2021). Daldiniaeschsone a, a rare tricyclic polyketide having a chromone unit fused to a δ-lactone and its symmetrical biphenyl dimer, daldiniaeschsone b, from an endophytic fungus daldinia eschscholtzii sdbr-cmunkc745. Journal of Fungi, 7(5).
Zhu, J., Wang, Z., Song, L., Fu, W., & Liu, L. (2023). Anti-Alzheimer’s Natural Products Derived from Plant Endophytic Fungi. Molecules, 28(5).
Zulkefli, N., Che Zahari, C. N. M., Sayuti, N. H., Kamarudin, A. A., Saad, N., Hamezah, H. S., Bunawan, H., Baharum, S. N., Mediani, A., Ahmed, Q. U., Ismail, A. F. H., & Sarian, M. N. (2023). Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. International Journal of Molecular Sciences, 24(5).
Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.