Optimization of Antibacterial Production of Endophytic Fungi with Various Sources of C, N, and pH using The Response Surface Methodology

Hary Widjajanti, Elisa Nurnawati, Muharni, Eca Desriana Zahwa

Abstract

Secondary metabolites extract of McB1 endophytic fungi from gelam (Melaleuca cajuputi Powell.) leaves have a high potential antibacterial activity against Escherichia coli ATCC8739 and Staphylococcus aureus ATCC6538 with flavonoids and phenol as bioactive compound. The low production of secondary metabolites extract in the cultivation stage and the high potential antibacterial activity of bioactive compounds produced by McB1 endophytic fungi require special treatment for optimize the secondary metabolites product. This is possibly achieved by optimizing the composition of the cultivation media, where various sources of carbon, nitrogen, and pH produce different amounts and classes of secondary metabolites. The objectives of the research to obtain the optimum interaction between sources of carbon, nitrogen, and pH for the production of secondary metabolite extract using Response Surface Methodology (RSM). The results showed that the highest extract (0.25 g) with the composition of sucrose as carbon source, yeast extract as nitrogen source, and pH 6. Based on the optimization of the medium with a variation of 4.5 gL-1 sucrose, 0.48 gL-1 yeast extract, and pH 6.1 yielded 0.34 g of secondary metabolites extract of McB1 endophytic fungi. The chromatogram profile of the optimized secondary metabolite extract showed the presence of flavonoids, phenols, terpenoids, and tannins.

References

Abo-Elmagd, H. I. (2014). Evaluation and Optimization of An- tioxidant Potentiality of Chaetomium Madrasense AUMC 9376. Journal of Genetic Engineering and Biotechnology, 12(1); 21–26

Agusta, A. (2006). Diversitas Jalur Biosintesis Senyawa Ter- pena pada Makhluk Hidup sebagai Target Obat Antiinfektif. Berita Biologi, 8(2); 141–152 (in Indonesia)

Arora, D. S. and P. Chandra (2010). Assay of Antioxidant Potential of Two Aspergillus Isolates by Different Methods Under Various Physio-Chemical Conditions. Brazilian Jour- nal of Microbiology, 41(3); 765–777

Arora, D. S., P. Chandra, and G. Jeet Kaur (2012). Optimiza- tion and Assay of Antioxidant Potential of Two Penicillium spp. by Different Procedures. Current Biotechnology, 1(1); 2–10

Arora, D. S. and N. Kaur (2019). Antimicrobial Potential of Fungal Endophytes from Moringa oleifera. Applied Biochem- istry and Biotechnology, 187(2); 628–648

Baş, D. and I. H. Boyacı (2007). Modeling and Optimization I: Usability of Response Surface Methodology. Journal of Food Engineering, 78(3); 836–845

Bele, A. A. and A. Khale (2011). An Overview on thin Layer Chromatography. International Journal of Pharmaceutical Sci- ences and Research, 2(2); 256

Bezerra, M. A., Ricardo E. S., Eliane P. O., Leonardo S. V. and Lucian A. E. (2008). Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta, 76(5); 965-977

Bhardwaj, A., D. Sharma, N. Jadon, and P. K. Agrawal (2015). Antimicrobial and Phytochemical Screening of Endophytic Fungi Isolated from Spikes of Pinus roxburghii. Archives of Clinical Microbiology, 6(3); 1–9

Boonyapranai, K., R. Tungpradit, S. Lhieochaiphant, and S. Phutrakul (2008). Optimization of Submerged Culture for The Production of Naphthoquinones Pigment by Fusar- ium verticillioides. Chiang Mai Journal of Science, 35(3); 457– 466

Bose, P., S. U. Gowrie, and G. Chathurdevi (2019). Opti- mization of Culture Conditions for Growth and Production of Bioactive Metabolites by Endophytic Fungus-Aspergillus tamarii. International Journal of Pharmacy and Biological Sci- ences, 9(2); 469–478

Bungihan, M. E. and C. A. Matias (2013). Determination of The Antioxidant, Phytochemical and Antibacterial Pro- files of Flowers from Selected Ornamental Plants in Nueva
Vizcaya, Philippines. Journal of Agricultural Science and Tech-
nology, 3; 833–841

Deka, D. and D. K. Jha (2018). Optimization of Culture Pa-
rameters for Improved Production of Bioactive Metabolite by Endophytic Geosmithia pallida (KU693285) Isolated from Brucea mollis Wall Ex. Kurz, an Endangered Medicinal Plant. Journal of Pure and Applied Microbiology, 12(3); 1205–1213

Flynn, C. M. and C. Schmidt-Dannert (2018). Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Syn- thase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum. Applied and Environmental Microbiology, 84(11); e00036–e00018

Gazi, M. R. and K. Kanda (2004). Optimisation of Cultural Conditions and Some Properties of Radicalscavenging Sub- stance from Sporobolomyces salmonicolor. Pakistan Journal of Biological Sciences, 7(8); 1365–1370

Goutam, J., V. K. Sharma, S. K. Verma, D. K. Singh, J. Kumar, A. Mishra, A. Kumar, and R. Kharwar (2014). Optimization of Culture Conditions for Enhanced Production of Bioactive Metabolites Rich in Antimicrobial and Antioxidant Activities Isolated from Emericella quadrilineata an Endophyte of Pteris pellucida. Journal of Pure and Applied Microbiology, 8(3); 2059– 2073

Gu,C.B.,MaH.,NingW.J.,NiuL.L.,HanH.Y.,YuanX.H. and Fu Y. J. (2018). Characterization, Culture Medium Opti- mization and Antioxidant Activity of an Endophytic Vitexin- Producing Fungus Dichotomopilus funicola Y3 from Pigeon Pea (Cajanus cajan (L.) Millsp.). Journal of Applied Microbiology, 125(4); 1054-1065

Gupta, V. K, Misra, A. K. and Gaur, R. K. (2010). Growth characteristics of Fusarium spp causing wilt disease in Psid- ium guajavaL in India. Journal of Plant Protection Research, 50(4); 452-462

Himalini, S. and M. Razia (2018). Optimization of Pigment Production In Fusarium incarnatum. International Journal of Research and Analytical Reviews, 5(4); 450–460

Ilmi, M (2021). Optimum Medium for Lipase Production by Lipolytic Filamentous Fungi Isolated from Kendari Landfill Soil. Asean Journal on Science and Technology for Development, 38(1); 121-126

Jeffrey, L., R. Son, and T. Tosiah (2008). Preliminary Screen- ing of Endophytic Fungi Isolated from Medicinal Plant at MARDI Sessang, Sarawak for their Bioactivity. Journal Trop- ical Agriculture and Food Science, 36(1); 121–126

Karthikeyan, K., K. Nanthakumar, K. Shanthi, and P. Laksh- manaperumalsamy (2010). Response Surface Methodology for Optimization of Culture Conditions for Dye Decoloriza- tion by a Fungus, Aspergillus niger HM11 Isolated from Dye Affected Soil. Iranian Journal of Microbiology, 2(4); 213

Kiran, B., K. Pathak, R. Kumar, and D. Deshmukh (2016). Statistical Optimization using Central Composite Design for Biomass and Lipid Productivity of Microalga: A Step Towards Enhanced Biodiesel Production. Ecological Engi- neering, 92; 73–81

C. Lee (2008). Statistical Optimization of Growth Medium for The Production of The Entomopathogenic and Phyto- toxic Cyclic Depsipeptide Beauvericin from Fusarium oxyspo- rum KFCC 11363P. Journal of Microbiology and Biotechnology, 18(1); 138–144

Mao, X. B., T. Eksriwong, S. Chauvatcharin, and J. J. Zhong (2005). Optimization of Carbon Source and Car- bon/Nitrogen Ratio for Cordycepin Production by Sub- merged Cultivation of Medicinal Mushroom Cordyceps mili- taris. Process Biochemistry, 40(5); 1667–1672

Martin, J. F. and A. L. Demain (1980). Control of Antibiotic Biosynthesis. Microbiological Reviews, 44(2); 230–251

Merlin, J. N., I. Christhudas, P. P. Kumar, and P. Agastian (2013). Optimization of Growth and Bioactive Metabolite Production: Fusarium solani. Asian Journal of Pharmaceutical and Clinical Research, 6(3); 98–103

Palukurty, M. A. and S. R. Somalanka (2016). Optimization of Nutritional Parameters for Production of Alpha Amylase using Aspergillus oryzae MTCC 3017 by Central Composite Design. International Journal Ind. Biotechnol Biomaterial, 2; 1–10

Qiu, J., W. Chen, M. Ding, Z. M.L., and F. Zhoa (2012). Op- timization Of Penilicilin G Acylase Production by Recombi- nat Bacillus subtilis Via Response Surface Analysis. Journal Zhejiang Science Technology University, 29(9); 1028–1037

Rahmawati, I., G. Rahayu, D. Ratnadewi, and S. Achmadi (2021). Effect of Medium pH and Light on Quinidine Pro- duction in Cinchona calisaya Wedd. Endophytic Fungi. Turk- ish Journal of Pharmaceutical Sciences, 18(2); 124

Raissi, S. and R. E. Farsani (2009). Statistical Process Op- timization through Multi-Response Surface Methodology. World Academy of Science, Engineering and Technology, 51(46); 267–271

Rousk, J., P. C. Brookes, and E. Baath (2009). Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest
Functional Redundancy in Carbon Mineralization. Applied
and Environmental Microbiology, 75(6); 1589–1596

Sanchez, S., A. Chávez, A. Forero, Y. García-Huante, A. Romero, M. Sánchez, D. Rocha, B. Sánchez, M. Avalos,
and S. Guzmán-Trampe (2010). Carbon Source Regulation of Antibiotic Production. The Journal of Antibiotics, 63(8); 442–459

Septiana, E. and P. Simanjuntak (2017). Effect of Different Culture Condition on Antioxidant Secondary Metabolites from Endophytic Fungi Isolated from Turmeric Root. Tra- ditional Medicine Journal, 22(1); 31–36

Septiana, E., N. Sukarno, and P. Simanjuntak (2017). En- dophytic Fungi Associated with Turmeric (Curcuma longa L.) can Inhibit Histamine-Forming Bacteria in Fish. Hayati Journal of Biosciences, 24(1); 46–52

Stanbury, P.F. and Whitaker, A (1987). Principles of Fermenta- tion Technology. Pergamon Press: New York
Tohge, T., M. Watanabe, R. Hoefgen, and A. R. Fernie (2013).

Shikimate and Phenylalanine Biosynthesis in The Green
Lineage. Frontiers in Plant Science, 4(62); 1–13
Tudzynski, B. (2014). Nitrogen Regulation of Fungal Sec-
ondary Metabolism in Fungi. Frontiers in Microbiology, 5;
656

Wang, D. I., C. Cooney, A. Demain, P. Dunhill, A. Humprey,
and M. Lily (1979). Fermentation and Enzyme Technology.
London: Willey Interscience

Widjajanti, H., N. Salni, E. Nastiti, and Nurnawati (2019).
Screening Endophytic Fungi of Melaleuca cajuputi Powell Leaves as an Antibacterial Sources. In Proceeding of The 1st International MIPAnet Conference on Science and Mathematics (IMC-SciMath)

Xu, L. J., Y. S. Liu, L. G. Zhou, and J. Y. Wu (2009). Enhanced Beauvericin Production with In Situ Adsorption in Mycelial Liquid Culture of Fusarium redolens Dzf2. Process Biochemistry, 44(10); 1063–1067

Authors

Hary Widjajanti
hary_widjajanti@unsri.ac.id (Primary Contact)
Elisa Nurnawati
Muharni
Eca Desriana Zahwa
Widjajanti, H., Nurnawati, E., Muharni, & Eca Desriana Zahwa. (2022). Optimization of Antibacterial Production of Endophytic Fungi with Various Sources of C, N, and pH using The Response Surface Methodology. Science and Technology Indonesia, 7(2), 149–157. https://doi.org/10.26554/sti.2022.7.2.149-157

Article Details

Most read articles by the same author(s)

1 2 > >>