Tritirachium oryzae and Other Endophytic Mediated Jambu Bol (Syzygium malaccense) are Potential as an Antioxidant
Abstract
Natural bioactive substances have been discovered produced of intracellular fungi. Intracellular fungi, as well as endophytic fungi, it can be found in organs are leaves, stems, roots, fruits, flowers, and seeds. This study aimed to specify for antioxidant activity of intracellular fungi Jambu Bol (Syzygium malaccense) mediated and identify secondary metabolites compounds. The liquid culture was partitioned with ethyl acetate solvent. Using chromatographic techniques, extracts were separated from their secondary metabolites with antioxidant activity apply the DPPH procedure. Its chemical structure was determined using NMR spectroscopic research, and endophytic fungi were recognized using phenotypic characteristics and molecular classification. The endophytic fungus isolation yielded four isolates: YF11, YF12, YF13, and YF14. YF12, with an IC50 of 53.03 g/mL, was the fungus that exhibited good antioxidant activity. Pure chemical secondary metabolites compounds were identified as 2-(4-hydroxyphenyl)-4-methoxytetrahydrofuran-3-ol. Tritirachium oryzae was identified as the endophytic fungus YF12 based on morphological studies and a phylogenetic tree. To boost its antioxidant activity, more study is needed to perform a semi-synthetic reaction on this pure molecule
References
Bairy, K., Sharma, A., Shalini, & Adiga. (2005). Evaluation of the hypoglycemic, hypolipidemic and hepatic glycogen raising effects of Syzygium malaccense upon streptozotocin induced diabetic rats. Journal of Natural Remedies, 5(1), 46–51.
Batista, Â. G., da Silva, J. K., Betim Cazarin, C. B., Biasoto, A. C. T., Sawaya, A. C. H. F., Prado, M. A., & Maróstica Júnior, M. R. (2017). Red-jambo (Syzygium malaccense): Bioactive compounds in fruits and leaves. LWT - Food Science and Technology, 76, 284–291. https://doi.org/10.1016/j.lwt.2016.05.013
Bezerra, J. D. P., Felipe, M. T. de C., Paiva, L. M., Magalhães, O. M. C., da Silva-Nogueira, E. B., da Silva, G. A., & de Souza-Motta, C. M. (2020). Phylogenetic placement of tritirachium strains from the urm culture collection originally founded by augusto chaves batista (1916–1967) in brazil, and the description of t. batistae sp. nov. Acta Botanica Brasilica, 34(2), 290–300. https://doi.org/10.1590/0102-33062019abb0356
Chagas, M. B. de O., Prazeres dos Santos, I., Nascimento da Silva, L. C., Correia, M. T. dos S., Magali de Araújo, J., Cavalcanti, M. da S., & Lima, V. L. de M. (2017). Antimicrobial Activity of Cultivable Endophytic Fungi Associated with Hancornia Speciosa Gomes Bark. The Open Microbiology Journal, 11(1), 179–188. https://doi.org/10.2174/1874285801711010179
Charria-Girón, E., Espinosa, M. C., Zapata-Montoya, A., Méndez, M. J., Caicedo, J. P., Dávalos, A. F., Caicedo, N. H. (2021). of the Antibacterial Activity of Crude ExtEvaluationracts Obtained From Cultivation of Native Endophytic Fungi Belonging to a Tropical Montane Rainforest in Colombia. Frontiers in Microbiology, 12(September). https://doi.org/10.3389/fmicb.2021.716523
de Souza Vieira, P. D., de Souza Motta, C. M., Lima, D., Torres, J. B., Quecine, M. C., Azevedoc, J. L., & de Oliveiraa, N. T. (2011). Endophytic fungi associated with transgenic and non-transgenic cotton. Mycology, 2(2), 91–97. https://doi.org/10.1080/21501203.2011.584390
Eskandarighadikolaii, S., Cruz, T., & Bungihan, M. (2015). Antioxidant Properties of Fungal Endophytes Associated with the Three Medicinal Plants Gliricidia sepium, Canna indica and Gardenia jasminoides. Journal of Scientific Research and Reports, 6(3), 217–226. https://doi.org/10.9734/jsrr/2015/16272
Fadhillah, F., Elfita, E., Muharni, M., & Yohandini, H. (2021). Antioxidant activity of endophytic fungi isolated from the stem bark of Swietenia mahagoni (L.) Jacq. IOP Conference Series: Materials Science and Engineering, 1011(1). https://doi.org/10.1088/1757-899X/1011/1/012047
Forrester, S. J., Kikuchi, D. S., S., H. M., Xu, Q., & K., G. K. (2016). Reactive Oxygen Species in Metabolic and Inflammatory Signalinglic Access. HHS Public Access Author Manuscript Circ Res. Author Manuscript; Available in PMC 2019 March 16. Published, 176(12), 139–148. https://doi.org/10.1161/CIRCRESAHA.117.311401.Reactive
Freitas, T., Pereira, L., & Pereira, C. (2015). Syzygium sp (Myrtaceae): Promising for Diabetes Treating? European Journal of Medicinal Plants, 7(4), 167–176. https://doi.org/10.9734/ejmp/2015/14592
Goffart, S., Tikkanen, P., Michell, C., Wilson, T., & Pohjoismäki, J. L. O. (2021). The type and source of reactive oxygen species influences the outcome of oxidative stress in cultured cells. Cells, 10(5), 1–17. https://doi.org/10.3390/cells10051075
Habisukan, U. H., Elfita, E., Widjajanti, H., & Setiawan, A. (2021a). Diversity of endophytic fungi in Syzygium aqueum. 22(3), 1129–1137. https://doi.org/10.13057/biodiv/d220307
Habisukan, U. H., Elfita, Widjajanti, H., & Setiawan, A. (2021b). Chemical characterization of secondary metabolite from the endophytic fungus trichordema reecei isolated from the twig of syzygium aqueum. Science and Technology Indonesia, 6(3), 137–143. https://doi.org/10.26554/sti.2021.6.3.137-143
Hameed, A., Hussain, S. A., Yang, J., Ijaz, M. U., Liu, Q., Suleria, H. A. R., & Song, Y. (2017). Antioxidants potential of the filamentous fungi (Mucor circinelloides). Nutrients, 9(10), 1–20. https://doi.org/10.3390/nu9101101
Hoog, De, G. ., Guarro, J., Gene, J., & Figueras, M. . (2001). Atlas_of_clinical_fungi_2nd_edn._G.S._20161117-16404-dbu9dn.pdf. https://doi.org/10.1007/s101230100009
Huang, J. H., Xiang, M. M., & Jiang, Z. De. (2012). Endophytic Fungi of Bitter Melon (Momordica charantia) in Guangdong Province, China. Great Lakes Entomologist, 45(1–2), 19–28. Retrieved from https://scholar.valpo.edu/tgle/vol45/iss1/2
Ibrahim, M., Oyebanji, E., Fowora, M., Aiyeolemi, A., Orabuchi, C., Akinnawo, B., & Adekunle, A. A. (2021). Extracts of endophytic fungi from leaves of selected Nigerian ethnomedicinal plants exhibited antioxidant activity. BMC Complementary Medicine and Therapies, 21(1), 1–13. https://doi.org/10.1186/s12906-021-03269-3
Khalil, D. M. A., El-Zayat, S. A., & El-Sayed, M. A. (2020). Phytochemical screening and antioxidant potential of endophytic fungi isolated from hibiscus sabdariffa. Journal of Applied Biotechnology Reports, 7(2), 116–124. https://doi.org/10.30491/jabr.2020.109287
Khlaifat, A. M., Al-Limoun, M. O., Khleifat, K. M., Al Tarawneh, A. A., Qaralleh, H., Rayyan, E. A., & Alsharafa, K. Y. (2019). Antibacterial synergy of Tritirachium oryzae-produced silver nanoparticles with different antibiotics and essential oils derived from Cupressus sempervirens and Asteriscus graveolens (Forssk). Tropical Journal of Pharmaceutical Research, 18(12), 2605–2616. https://doi.org/10.4314/tjpr.v18i12.21
Kim, H. J., Jun, J. G., & Kim, J. K. (2013). 2-(4-hydroxyphenyl)-5-(3-hydroxypropenyl)-7-methoxybenzofuran, a novel ailanthoidol derivative, exerts anti-inflammatory effect through downregulation of mitogen-activated protein kinase in lipopolysaccharide-treated RAW 264.7 cells. Korean Journal of Physiology and Pharmacology, 17(3), 217–222. https://doi.org/10.4196/kjpp.2013.17.3.217
Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., … Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757–772. https://doi.org/10.2147/CIA.S158513
Maria, G. L., Sridhar, K. R., & Raviraja, N. S. (2005). Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. Journal of Agricultural Technology Antimicrobial, 1(pH 7), 67–80.
Mbekou, M. I. K., Dize, D., Yimgang, V. L., Djague, F., Toghueo, R. M. K., Sewald, N., … Boyom, F. F. (2021). Antibacterial and Mode of Action of Extracts from Endophytic Fungi Derived from Terminalia mantaly, Terminalia catappa, and Cananga odorata. BioMed Research International, 2021(Pcv 13). https://doi.org/10.1155/2021/6697973
Metasari, S., Elfita, Muharni, & Yohandini, H. (2020). Antioxidant compounds from the stem bark of syzygium samarangense L. Molekul, 15(3), 175–183. https://doi.org/10.20884/1.jm.2020.15.3.626
Nair, D. N., & Padmavathy, S. (2014). Impact of endophytic microorganisms on plants, environment and humans. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/250693
Naseri, A., Fata, A., & Najafzadeh, M. J. (2013). First Case of Tritirachium oryzae as Agent of Onychomycosis and Its Susceptibility to Antifungal Drugs. Mycopathologia, 176(1–2), 119–122. https://doi.org/10.1007/s11046-013-9653-0
Nguyen, M. P., Lehosmaa, K., Martz, F., Koskimäki, J. J., Pirttilä, A. M., & Häggman, H. (2021). Host species shape the community structure of culturable endophytes in fruits of wild berry species (Vaccinium myrtillus L., Empetrum nigrum L. And Vaccinium vitis-idaea L.). FEMS Microbiology Ecology, 97(8), 1–13.
https://doi.org/10.1093/femsec/fiab097
Nunes, P. C., De Souza Aquino, J., Rockenbach, I. I., & Stamford, T. L. M. (2016). Physico-chemical characterization, bioactive compounds and antioxidant activity of Malay apple [Syzygium malaccense (L.) Merr. & L.M. Perry]. PLoS ONE, 11(6), 1–11. https://doi.org/10.1371/journal.pone.0158134
Oyinlade, O. C. (2014). Phytochemical and Physicochemical Analysis of Three Different Types of Apples. International Journal of Scientific Research and Reviews Phytochemical and Physicochemical Analysis of Three Different Types of Apples, 3(1), 67–78. Retrieved from www.ijsrr.org
Pakshir, K., Rahimi Ghiasi, M., Zomorodian, K., & Gharavi, A. R. (2013). Isolation and molecular identification of keratinophilic fungi from public parks soil in Shiraz, Iran. BioMed Research International, 2013. https://doi.org/10.1155/2013/619576
Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian Journal of Clinical Biochemistry, 30(1), 11–26. https://doi.org/10.1007/s12291-014-0446-0
Pino, J. A., Marbot, R., Rosado, A., & Vázquez, C. (2004). Volatile constituents of Malay rose apple [Syzygium malaccense (L.) Merr. & Perry]. Flavour and Fragrance Journal, 19(1), 32–35. https://doi.org/10.1002/ffj.1269
Qadri, M., Rajput, R., & Abdin, M. Z. (2014). Diversity , Molecular Phylogeny , and Bioactive Potential of Fungal Endophytes Associated with the Himalayan Blue Pine ( Pinus wallichiana ). https://doi.org/10.1007/s00248-014-0379-4
Rahmawati, N., Isfandito, A. R., Astuti, D. I., & Aditiawati, P. (2016). Endophytic fungi from surian (Toona sinensis roem) and antioxidant potency from its culture. Asian Journal of Plant Sciences, 15(1–2), 8–15. https://doi.org/10.3923/ajps.2016.8.15
Rumidatul, A., Rahmawati, N., & Sunarya, S. (2021). Production of Secondary Metabolites and its Antibacterial and Antioxidant Activity During the Growth Period of Endophytic Fungi Isolated from Gall Rust Sengon Plants. Pharmacognosy Journal, 13(2), 325–331. https://doi.org/10.5530/pj.2021.13.42
Syarifah, Elfita, Widjajanti, H., Setiawan, A., & Kurniawati, A. R. (2021). Diversity of endophytic fungi from the root bark of Syzygium zeylanicum, and the antibacterial activity of fungal extracts, and secondary metabolite. Biodiversitas, 22(10), 4572–4582. https://doi.org/10.13057/biodiv/d221051
Uc-Cachon, A. H., Gamboa-Angulo, M., Borges-Argaez, R., Reye-Estebanez, M., Said-Fernandez, S., & Molina-Salina, G. M. (2019). Antitubercular Activity of The Fungus gliocladium sp. MR41 Strain. Iranian Journal of Pharmaceutical Research, 18(2), 860–866. https://doi.org/10.22037/ijpr.2019.1100667
Ueda, J. Y., Takagi, M., & Shin-Ya, K. (2010). New xanthoquinodin-like compounds, JBIR-97,-98 and-99, obtained from marine sponge-derived fungus Tritirachium sp. SpB081112MEf2. Journal of Antibiotics, 63(10), 615–618. https://doi.org/10.1038/ja.2010.92
Watanabe, T. (2010). Pictorial Atlas of Soil and Seed Fungi: Morfologies of Cultural Fungi and Key to Species. In Pictorial Atlas of Soil and Seed Fungi (Third Edit). https://doi.org/10.1201/ebk1439804193
Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), 1–22. https://doi.org/10.1111/jfbc.13394
Zhang, H., Zhao, Z., & Wang, H. (2017). Cytotoxic natural products from marine sponge-derived microorganisms. Marine Drugs, 15(3). https://doi.org/10.3390/md15030068
Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.