Isolation and Molecular Identification of Direct Red 80 Synthetic Dye Degradation Bacteria from Palembang Indonesia Jumputan Cloth Industrial Waste

Muharni, Elisa Nurnawati, Heni Yohandini, Hary Widjajanti


Industrial waste from Jumputan cloth production pose a significant risk to environmental safety due to their toxic synthetic dye content. Several studies have shown that the presence of bacteria in these materials plays a very important role in decolorization process of the constituent dye. Therefore, this study aims to isolate bacteria with the ability to decolorize direct red 80 from Jumputan cloth industrial waste. Characterization of isolates was carried out macroscopically, microscopically, and biochemically, followed by molecular identification using the 16S rRNA gene. Decolorization effects of the samples on red dye 80 were then assessed using a spectrophotometer at a maximum wavelength of 528 nm. The results showed that 6 bacteria isolates can degrade dye, with decolorizing power ranging from 26.33±0.94 - 73.67±0.47. The highest potential for decolorizing waste synthetic dye is seen in isolate BD 05. Phylogenetic analysis showed that there were 3 genera of bacteria among the samples obtained, namely Bacillus, Aeromonas, and Pseudomonas. These bacteria were closely related to Bacillus tropicus, Areomonas jandaei, and Pseudomonas stutzeri. Pseudomonas stutzeri (BD 05) has the highest potential in handling jumputan industrial waste.


Abd El Rahim, W. M., H. Moawad, A. Z. A. Azeiz, and M. J. Sadowsky (2021). Biodegradation of Azo Dyes by Bacterial or Fungal Consortium and Identification of the Biodegradation Products. The Egyptian Journal of Aquatic Research, 47(3); 269–276

Bergey, D. H. (1994). Bergey’s Manual of Determinative Bacteriology. Lippincott Williams & Wilkins

Bharagava, R. N., S. Mani, S. I. Mulla, and G. D. Saratale (2018). Degradation and Decolourization Potential of an Ligninolytic Enzyme Producing Aeromonas Hydrophila For Crystal Violet Dye and Its Phytotoxicity Evaluation. Ecotoxicology and Environmental Safety, 156; 166–175

Brüschweiler, B. J. and C. Merlot (2017). Azo Dyes in Clothing Textiles Can Be Cleaved Into a Series of Mutagenic Aromatic Amines Which are Not Regulated Yet. Regulatory Toxicology and Pharmacology, 88; 214–226

Chemical, E. B. I. (2022). Chemical Entities of Biological Intrest. Sirius F3B (acid form)

Cong, J., X. Xie, Y. Liu, Y. Qin, J. Fan, Y. Fang, N. Liu, Q. Zhang, X. Song, and W. Sand (2022). Biochemical Characterization of A Novel Azo Reductase Named BVU5 From the Bacterial Flora Ddmz1: Application For Decolorization of Azo Dyes. RSC advances, 12(4); 1968–1981

Dapson, R., C. Fagan, J. Kiernan, and T. Wickersham (2011). Certification Procedures for Sirius red F3B (CI 35780, Direct red 80). Biotechnic & Histochemistry, 86(3); 133–139

Fareed, A., H. Zaffar, M. Bilal, J. Hussain, C. Jackson, and T. A. Naqvi (2022). Decolorization of Azo Dyes by A Novel Aerobic Bacterial Strain Bacillus Cereus Strain ROC. Plos one, 17(6); 0269559

Fouda, A., S. Hassan, M. Azab, and E. Saied (2016). Decolorization of Different Azo Dyes and Detoxification of Dyeing Wastewater by Pseudomonas Stutzeri (SB_13) Isolated from Textile Dyes Effluent. British Biotechnology Journal, 15(4); 1–18

Garg, S. K. and M. Tripathi (2017). Microbial Strategies for Discoloration and Detoxification of Azo Dyes From Textile Effluents. Research Journal of Microbiology, 12(1); 1–19

Guadie, A., S. Tizazu, M. Melese, W. Guo, H. H. Ngo, and S. Xia (2017). Biodecolorization of Textile Azo Dye Using Bacillus sp. Strain Ch12 Isolated from Alkaline Lake. Biotechnology Reports, 15; 92–100

Idris, A. B., H. G. Hassan, M. A. S. Ali, S. M. Eltaher, L. B. Idris, H. N. Altayb, A. M. Abass, M. M. A. Ibrahim, E. A. M. Ibrahim, and M. A. Hassan (2020). Molecular Phylogenetic Analysis of 16S rRNA Sequences Identified Two Lineages of Helicobacter Pylori Strains Detected from Different Regions in Sudan Suggestive of Differential Evolution. International Journal of Microbiology, 2020; 19–20

Ikram, M., M. Naeem, M. Zahoor, M. M. Hanafiah, A. A. Oyekanmi, R. Ullah, D. A. A. Farraj, M. S. Elshikh, I. Zekker, and N. Gulfam (2022). Biological Degradation of the Azo Dye Basic Orange 2 by Escherichia coli: A Sustainable and Ecofriendly Approach for the Treatment of Textile Wastewater. Water, 14(13); 2063

Johnson, J. S., D. J. Spakowicz, B. Y. Hong, L. M. Petersen, P. Demkowicz, L. Chen, S. R. Leopold, B. M. Hanson, H. O. Agresta, and M. Gerstein (2019). Evaluation of 16S rRNA Gene Sequencing for Species and Strain-level Microbiome Analysis. Nature Communications, 10(1); 5029

Karim, M. E., K. Dhar, and M. T. Hossain (2018). Decolorization of Textile Reactive Dyes by Bacterial Monoculture and Consortium Screened From Textile Dyeing Effluent. Journal of Genetic Engineering and Biotechnology, 16(2); 375–380

Karnwal, A. (2019). Textile Azo Dye Decolorization and Detoxification Using Bacteria Isolated From Textile Effluents. BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology, 100(4)

Khaledian, E., K. A. Brayton, and S. L. Broschat (2020). A Systematic Approach to Bacterial Phylogeny Using Order Level Sampling and Identification of HGT Using Network Science. Microorganisms, 8(2); 312

Khan, A. U., M. Zahoor, M. U. Rehman, A. B. Shah, I. Zekker, F. A. Khan, R. Ullah, G. M. Albadrani, R. Bayram, and H. R. Mohamed (2022). Biological Mineralization of Methyl Orange by Pseudomonas aeruginosa. Water, 14(10); 1551

Lade, H., S. Govindwar, and D. Paul (2015). Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by A Polyurethane Foam Immobilized Microbial Consortium in An Upflow Column Bioreactor. International Journal of Environmental Research and Public Health, 12(6); 6894–6918

Lalnunhlimi, S. and V. Krishnaswamy (2016). Decolorization of Azo Dyes (Direct Blue 151 and Direct Red 31) by Moderately Alkaliphilic Bacterial Consortium. Brazilian Journal of Microbiology, 47; 39–46

Liu, Y., J. Du, Q. Lai, R. Zeng, D. Ye, J. Xu, and Z. Shao (2017). Proposal of Nine Novel Species of the Bacillus Cereus Group. International Journal of Systematic and Evolutionary Microbiology, 67(8); 2499–2508

Liu, Y., C. Li, J. Bao, X. Wang, W. Yu, and L. Shao (2022). Degradation of Azo Dyes with Different Functional Groups in Simulated Wastewater by Electrocoagulation. Water, 14(1); 123

Manna, S., D. Roy, P. Saha, D. Gopakumar, and S. Thomas (2017). Rapid Methylene Blue Adsorption Using Modified Lignocellulosic Materials. Process Safety and Environmental Protection, 107; 346–356

Marimuthu, T., S. Rajendran, and M. Manivannan (2013). A Review on Bacterial Degradation of Textile Dyes. Journal of Chemistry and Chemical Sciences, 3(3); 201–212

Miran, W., K. Rasool, M. Nawaz, A. Kadam, S. Shin, J. Heo, J. Jang, and D. Sung Lee (2016). Simultaneous Electricity Production and Direct Red 80 Degradation Using a Dual Chamber Microbial Fuel Cell. Desalination and Water Treatment, 57(19); 9051–9059

Muharni, M., H. Yohandini, and M. Y. Rivai (2018). Biodecolorization of Textile Industrial Waste By Thermophilic Bacteria Anoxybacillus Rupiensis Ts04 And Anoxybacillus Flavithermus Ts15. BIOVALENTIA: Biological Research Journal, 4(1); 1–4

Ngo, A. C. R. and D. Tischler (2022). Microbial Degradation of Azo Dyes: Approaches and Prospects For a Hazard-free Conversion by Microorganisms. International Journal of Environmental Research and Public Health, 19(8); 4740

Panda, S. K., I. Aggarwal, H. Kumar, L. Prasad, A. Kumar, A. Sharma, D. V. N. Vo, D. Van Thuan, and V. Mishra (2021). Magnetite Nanoparticles as Sorbents For Dye Removal: A Review. Environmental Chemistry Letters, 19; 2487–2525

Rasool, K., S. H. Woo, and D. S. Lee (2013). Simultaneous Removal of COD and Direct Red 80 in a Mixed Anaerobic Sulfate-reducing Bacteria Culture. Chemical Engineering Journal, 223; 611–616

Sałdan, A., M. Król, M. Woźniakiewicz, and P. Kościelniak (2022). Application of Capillary Electromigration Methods in the Analysis of Textile Dyes. Molecules, 27(9); 2767

Saratale, R. G., G. D. Saratale, J. S. Chang, and S. P. Govindwar (2011). Bacterial Decolorization and Degradation of Azo Dyes: a Review. Journal of the Taiwan institute of Chemical Engineers, 42(1); 138–157

Sari, I. P. and K. Simarani (2019). Decolorization of Selected Azo Dye by Lysinibacillus Fusiformis W1B6: Biodegradation Optimization, Isotherm, and Kinetic Study Biosorption Mechanism. Adsorption Science & Technology, 37(5-6); 492–508

Sarkar, S., A. Banerjee, N. Chakraborty, K. Soren, P. Chakraborty, and R. Bandopadhyay (2020). Structural-functional Analyses of Textile Dye Degrading Azoreductase, Laccase and Peroxidase: A Comparative in Silico Study. Electronic Journal of Biotechnology, 43; 48–54

Shi, H., S. Y. D. Chiang, Y. Wang, Y. Wang, S. Liang, J. Zhou, R. Fontanez, S. Gao, and Q. Huang (2021). An Electrocoagulation and Electrooxidation Treatment Train to Remove and Degrade Per-and Polyfluoroalkyl Substances in Aqueous Solution. Science of the Total Environment, 788; 147723

Siregar, R. A. N., A. Sanjaya, J. Lucy, and R. Pinontoan (2020). Methylene Blue Decolorizing Bacteria Isolated From Water Sewage in Yogyakarta, Indonesia. Biodiversitas Journal of Biological Diversity, 21(3)

Thiruppathi, K., K. Rangasamy, M. Ramasamy, and D. Muthu (2021). Evaluation of Textile Dye Degrading Potential of Ligninolytic Bacterial Consortia. Environmental Challenges, 4; 100078

Zhuang, M., E. Sanganyado, X. Zhang, L. Xu, J. Zhu, W. Liu, and H. Song (2020). Azo Dye Degrading Bacteria Tolerant to Extreme Conditions Inhabit Nearshore Ecosystems: Optimization and Degradation Pathways. Journal of Environmental Management, 261; 110222


Elisa Nurnawati
Heni Yohandini
Hary Widjajanti (Primary Contact)
Muharni, Nurnawati, E. ., Yohandini, H. ., & Widjajanti, H. (2023). Isolation and Molecular Identification of Direct Red 80 Synthetic Dye Degradation Bacteria from Palembang Indonesia Jumputan Cloth Industrial Waste. Science and Technology Indonesia, 8(3), 429–435.

Article Details

Most read articles by the same author(s)