Variation of M2+ (Ni and Zn) in Cellulose-based M2+/Cr Composite Materials to Determine Adsorption and Regeneration Abilities on Phenol Removal
Abstract
Cellulose-based Ni/Cr (Ni/Cr-C) and cellulose-based Zn/Cr (Zn/Cr-C) composite materials have been successfully carried out, which is indicated by the XRD, FTIR, and BET analysis. Layered double hydroxide Ni/Cr (Ni/Cr-LDH) increased surface area from 0.128 m2/g to 2.207 m2/g in Ni/Cr-C composites, and layered double hydroxide Zn/Cr (Zn/Cr-LDH) also increased surface area from 0.133 m2/g to 3.714 m2/g in Zn/Cr-C composites. The pHpzc of the material in this study is pH 5.94-8.43, while the optimum pH of all materials is pH 9. Ni/Cr-LDH experienced an increase in adsorption capacity after becoming a Ni/Cr-C composite, from 8.985 mg/g to 24.510 mg/g, and Zn/Cr-LDH experienced an increase in adsorption capacity from 13.263 mg/g to 30.960 mg/g in Zn/Cr-C. Zn/Cr-C composite material has a greater adsorption ability than Ni/Cr-C. Kinetic and isotherm model in this study followed by PSO kinetic with optimum contact time at 70 minutes and Freundlich isotherm. Ni/Cr-C and Zn/Cr-C composite materials can be used repeatedly in the regeneration process until the 4th cycle.
References
da Silva, M. C. F., Schnorr, C., Lütke, S. F., Knani, S., Nascimento, V. X., Lima, É. C., Thue, P. S., Vieillard, J., Silva, L. F. O., & Dotto, G. L. (2022). KOH activated carbons from Brazil nut shell: Preparation, characterization, and their application in phenol adsorption. Chemical Engineering Research and Design, 187, 387–396.
Darvishi Chaghaganooj, Z., Asasian-Kolur, N., Sharifian, S., & Sillanpää, M. (2021). Ce and Mn/bio-waste-based activated carbon composite: Characterization, phenol adsorption and regeneration. Journal of Environmental Chemical Engineering, 9(4).
Debnath, B., Duarah, P., Haldar, D., & Kumar, M. (2022). Improving the properties of corn starch films for application as packaging material via reinforcement with microcrystalline cellulose synthesized from elephant grass. Food Packaging and Shelf Life, 34(8), 100937.
Dehbi, A., Dehmani, Y., Omari, H., Lammini, A., Elazhari, K., Abouarnadasse, S., & Abdallaoui, A. (2020). Comparative study of malachite green and phenol adsorption on synthetic hematite iron oxide nanoparticles (α-Fe2O3). Surfaces and Interfaces, 21(May), 100637.
Dehmani, Y., Dridi, D., Lamhasni, T., Abouarnadasse, S., Chtourou, R., & Lima, E. C. (2022). Review of phenol adsorption on transition metal oxides and other adsorbents. Journal of Water Process Engineering, 49(June), 102965.
Dehmani, Y., Khalki, O. El, Mezougane, H., & Abouarnadasse, S. (2021). Comparative study on adsorption of cationic dyes and phenol by natural clays. Chemical Data Collections, 33, 100674.
Dehmani, Y., Sellaoui, L., Alghamdi, Y., Lainé, J., Badawi, M., Amhoud, A., Bonilla-Petriciolet, A., Lamhasni, T., & Abouarnadasse, S. (2020). Kinetic, thermodynamic and mechanism study of the adsorption of phenol on Moroccan clay. Journal of Molecular Liquids, 312.
Dong, F. X., Yan, L., Zhou, X. H., Huang, S. T., Liang, J. Y., Zhang, W. X., Guo, Z. W., Guo, P. R., Qian, W., Kong, L. J., Chu, W., & Diao, Z. H. (2021). Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: Performance, kinetics and mechanism. Journal of Hazardous Materials, 416(March), 125930.
Gao, W., Lin, Z., Chen, H., Yan, S., Zhu, H., Zhang, H., Sun, H., Zhang, S., Zhang, S., & Wu, Y. (2022). Roles of Graphitization Degree and Surface Functional Groups of N-Doped Activated Biochar for Phenol Adsorption. SSRN Electronic Journal, 167(September), 105700.
Giwa, A. (2014). Adsorption of Phenol from Refinery Wastewater Using Rice Husk Activated Carbon. Iranica Journal of Energy & Environment, October.
Hernández-Barreto, D. F., Giraldo, L., & Moreno-Piraján, J. C. (2020). Dataset on adsorption of phenol onto activated carbons: Equilibrium, kinetics and mechanism of adsorption. Data in Brief, 32.
Ingole, R. S., Lataye, D. H., & Dhorabe, P. T. (2017). Adsorption of phenol onto Banana Peels Activated Carbon. KSCE Journal of Civil Engineering, 21(1), 100–110.
Jelonek, Z., Drobniak, A., Mastalerz, M., & Jelonek, I. (2020). Synthesis of Activated carbon- surfactant modified montmorillonite clay-alginate composite membrane for methylene blue adsorption. Science of the Total Environment, 141267.
Juleanti, N., Palapa, N. R., Taher, T., Hidayati, N., Putri, B. I., & Lesbani, A. (2021). The capability of biochar-based CaAl and MgAl composite materials as adsorbent for removal cr(VI) in aqueous solution. Science and Technology Indonesia, 6(3), 196–203.
Keshvardoostchokami, M., Majidi, M., Zamani, A., & Liu, B. (2021). Adsorption of phenol on environmentally friendly Fe3O4/ chitosan/ zeolitic imidazolate framework-8 nanocomposite: Optimization by experimental design methodology. Journal of Molecular Liquids, 323, 115064.
Liu, J., Li, J., Bing, X., Ng, D. H. L., Cui, X., Ji, F., & Dienguila, D. (2018). ZnCr-LDH/N-doped graphitic carbon-incorporated g-C3N4 2D/2D nanosheet heterojunction with enhanced charge transfer for photocatalysis. Materials Research Bulletin, 102(3), 379–390.
Lupa, L., Cocheci, L., Pode, R., & Hulka, I. (2018). Phenol adsorption using Aliquat 336 functionalized Zn-Al layered double hydroxide. Separation and Purification Technology, 196(May 2017), 82–95.
Mohammed, N. A. S., Abu-Zurayk, R. A., Hamadneh, I., & Al-Dujaili, A. H. (2018). Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies. Journal of Environmental Management, 226(August), 377–385.
Padalkar, N. S., Sadavar, S. V, Shinde, R. B., Patil, A. S., Patil, U. M., Dhawale, D. S., Bulakhe, R. N., Kim, H., Im, H., Vinu, A., Lokhande, C. D., & Gunjakar, J. L. (2022). Layer-by-layer nanohybrids of Ni-Cr-LDH intercalated with 0D polyoxotungstate for highly efficient hybrid supercapacitor. Journal of Colloid And Interface Science, 616, 548–559.
Safwat, S. M., Mohamed, N. Y., Meshref, M. N. A., & Elawwad, A. (2022). Adsorption of Phenol onto Aluminum Oxide Nanoparticles: Performance Evaluation, Mechanism Exploration, and Principal Component Analysis (PCA) of Thermodynamics. Adsorption Science and Technology, 2022.
Sahu, J. N., Karri, R. R., & Jayakumar, N. S. (2021). Improvement in phenol adsorption capacity on eco-friendly biosorbent derived from waste Palm-oil shells using optimized parametric modelling of isotherms and kinetics by differential evolution. Industrial Crops and Products, 164(July 2020), 113333.
Saleh, T. A., Adio, S. O., Asif, M., & Dafalla, H. (2018). Statistical analysis of phenols adsorption on diethylenetriamine-modified activated carbon. Journal of Cleaner Production, 182, 960–968.
Sani, D. E., Idoko, J. O., Okwute, E. S., & Apeh, M. C. (2020). Adsorption of phenol onto unactivated Moringa oleifera Seed Shells residue by UV - visible spectrophotometer. GSC Biological and Pharmaceutical Sciences, 13(02), 80–90.
Sun, J., Wang, Y., He, Y., Liu, J., Xu, L., Zeng, Z., Song, Y., Qiu, J., Huang, Z., & Cui, L. (2022). Effective removal of nanoplastics from water by cellulose/MgAl layered double hydroxides composite beads. Carbohydrate Polymers, 298(September), 120059.
Wang, X., Cheng, B., Zhang, L., Yu, J., & Normatov, I. (2022). Adsorption performance of tetracycline on NiFe layered double hydroxide hollow microspheres synthesized with silica as the template. Journal of Colloid and Interface Science, 627, 793–803.
Yuliasari, N., Badri, A. F., Wijaya, A., Mega, P., Bahar, S., Siregar, N., & Mohadi, R. (2022). Modification of Mg/Al-LDH Intercalated Metal Oxide (Mg/Al-Ni) to Improve the Performance of Methyl Orange and Methyl Red Dyes Adsorption Process. Science and Technology Indonesia, 7(3), 275–283.
Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.